Author: Maurice G. Kendall
Publisher: Courier Corporation
ISBN: 0486439275
Category : Mathematics
Languages : en
Pages : 82
Book Description
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
A Course in the Geometry of N Dimensions
Author: Maurice G. Kendall
Publisher: Courier Corporation
ISBN: 0486439275
Category : Mathematics
Languages : en
Pages : 82
Book Description
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
Publisher: Courier Corporation
ISBN: 0486439275
Category : Mathematics
Languages : en
Pages : 82
Book Description
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
The Geometry of Ecological Interactions
Author: Ulf Dieckmann
Publisher: Cambridge University Press
ISBN: 0521642949
Category : Mathematics
Languages : en
Pages : 583
Book Description
The field of theoretical ecology has expanded dramatically in the last few years. This volume gives detailed coverage of the main developing areas in spatial ecological theory, and is written by world experts in the field. Integrating the perspective from field ecology with novel methods for simplifying spatial complexity, it offers a didactical treatment with a gradual increase in mathematical sophistication from beginning to end. In addition, the volume features introductions to those fundamental phenomena in spatial ecology where emerging spatial patterns influence ecological outcomes quantitatively. An appreciation of the consequences of this is required if ecological theory is to move on in the 21st century. Written for reseachers and graduate students in theoretical, evolutionary and spatial ecology, applied mathematics and spatial statistics, it will be seen as a ground breaking treatment of modern spatial ecological theory.
Publisher: Cambridge University Press
ISBN: 0521642949
Category : Mathematics
Languages : en
Pages : 583
Book Description
The field of theoretical ecology has expanded dramatically in the last few years. This volume gives detailed coverage of the main developing areas in spatial ecological theory, and is written by world experts in the field. Integrating the perspective from field ecology with novel methods for simplifying spatial complexity, it offers a didactical treatment with a gradual increase in mathematical sophistication from beginning to end. In addition, the volume features introductions to those fundamental phenomena in spatial ecology where emerging spatial patterns influence ecological outcomes quantitatively. An appreciation of the consequences of this is required if ecological theory is to move on in the 21st century. Written for reseachers and graduate students in theoretical, evolutionary and spatial ecology, applied mathematics and spatial statistics, it will be seen as a ground breaking treatment of modern spatial ecological theory.
Asymptotic Geometric Analysis, Part I
Author: Shiri Artstein-Avidan
Publisher: American Mathematical Soc.
ISBN: 1470421933
Category : Mathematics
Languages : en
Pages : 473
Book Description
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.
Publisher: American Mathematical Soc.
ISBN: 1470421933
Category : Mathematics
Languages : en
Pages : 473
Book Description
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.
The Geometry and Dynamics of Magnetic Monopoles
Author: Michael Francis Atiyah
Publisher: Princeton University Press
ISBN: 1400859301
Category : Mathematics
Languages : en
Pages : 143
Book Description
Systems governed by non-linear differential equations are of fundamental importance in all branches of science, but our understanding of them is still extremely limited. In this book a particular system, describing the interaction of magnetic monopoles, is investigated in detail. The use of new geometrical methods produces a reasonably clear picture of the dynamics for slowly moving monopoles. This picture clarifies the important notion of solitons, which has attracted much attention in recent years. The soliton idea bridges the gap between the concepts of "fields" and "particles," and is here explored in a fully three-dimensional context. While the background and motivation for the work comes from physics, the presentation is mathematical. This book is interdisciplinary and addresses concerns of theoretical physicists interested in elementary particles or general relativity and mathematicians working in analysis or geometry. The interaction between geometry and physics through non-linear partial differential equations is now at a very exciting stage, and the book is a contribution to this activity. Originally published in 1988. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400859301
Category : Mathematics
Languages : en
Pages : 143
Book Description
Systems governed by non-linear differential equations are of fundamental importance in all branches of science, but our understanding of them is still extremely limited. In this book a particular system, describing the interaction of magnetic monopoles, is investigated in detail. The use of new geometrical methods produces a reasonably clear picture of the dynamics for slowly moving monopoles. This picture clarifies the important notion of solitons, which has attracted much attention in recent years. The soliton idea bridges the gap between the concepts of "fields" and "particles," and is here explored in a fully three-dimensional context. While the background and motivation for the work comes from physics, the presentation is mathematical. This book is interdisciplinary and addresses concerns of theoretical physicists interested in elementary particles or general relativity and mathematicians working in analysis or geometry. The interaction between geometry and physics through non-linear partial differential equations is now at a very exciting stage, and the book is a contribution to this activity. Originally published in 1988. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Complex Geometry
Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Discrete Differential Geometry
Author: Alexander I. Bobenko
Publisher: American Mathematical Society
ISBN: 1470474565
Category : Mathematics
Languages : en
Pages : 432
Book Description
An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.
Publisher: American Mathematical Society
ISBN: 1470474565
Category : Mathematics
Languages : en
Pages : 432
Book Description
An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.
Topology, Geometry, and Gauge Fields
Author: Gregory L. Naber
Publisher: Springer Science & Business Media
ISBN: 1475727429
Category : Mathematics
Languages : en
Pages : 410
Book Description
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.
Publisher: Springer Science & Business Media
ISBN: 1475727429
Category : Mathematics
Languages : en
Pages : 410
Book Description
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.
Period Mappings and Period Domains
Author: James Carlson
Publisher: Cambridge University Press
ISBN: 1108422624
Category : Mathematics
Languages : en
Pages : 577
Book Description
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.
Publisher: Cambridge University Press
ISBN: 1108422624
Category : Mathematics
Languages : en
Pages : 577
Book Description
An introduction to Griffiths' theory of period maps and domains, focused on algebraic, group-theoretic and differential geometric aspects.
Qα Analysis on Euclidean Spaces
Author: Jie Xiao
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110600102
Category : Mathematics
Languages : en
Pages : 390
Book Description
Starting with the fundamentals of Qα spaces and their relationships to Besov spaces, this book presents all major results around Qα spaces obtained in the past 16 years. The applications of Qα spaces in the study of the incompressible Navier-Stokes system and its stationary form are also discussed. This self-contained book can be used as an essential reference for researchers and graduates in analysis and partial differential equations.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110600102
Category : Mathematics
Languages : en
Pages : 390
Book Description
Starting with the fundamentals of Qα spaces and their relationships to Besov spaces, this book presents all major results around Qα spaces obtained in the past 16 years. The applications of Qα spaces in the study of the incompressible Navier-Stokes system and its stationary form are also discussed. This self-contained book can be used as an essential reference for researchers and graduates in analysis and partial differential equations.
The Interaction of Analysis and Geometry
Author: Victor I. Burenkov
Publisher: American Mathematical Soc.
ISBN: 0821840606
Category : Mathematics
Languages : en
Pages : 354
Book Description
Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."
Publisher: American Mathematical Soc.
ISBN: 0821840606
Category : Mathematics
Languages : en
Pages : 354
Book Description
Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."