The Hilbert Function of a Level Algebra

The Hilbert Function of a Level Algebra PDF Author: A. V. Geramita
Publisher: American Mathematical Soc.
ISBN: 0821839403
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.

The Hilbert Function of a Level Algebra

The Hilbert Function of a Level Algebra PDF Author: A. V. Geramita
Publisher: American Mathematical Soc.
ISBN: 0821839403
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.

Deformation of Artinian Algebras and Jordan Type

Deformation of Artinian Algebras and Jordan Type PDF Author: Anthony Iarrobino
Publisher: American Mathematical Society
ISBN: 1470473569
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This volume contains the proceedings of the AMS-EMS-SMF Special Session on Deformations of Artinian Algebras and Jordan Type, held July 18?22, 2022, at the Universit‚ Grenoble Alpes, Grenoble, France. Articles included are a survey and open problems on deformations and relation to the Hilbert scheme; a survey of commuting nilpotent matrices and their Jordan type; and a survey of Specht ideals and their perfection in the two-rowed case. Other articles treat topics such as the Jordan type of local Artinian algebras, Waring decompositions of ternary forms, questions about Hessians, a geometric approach to Lefschetz properties, deformations of codimension two local Artin rings using Hilbert-Burch matrices, and parametrization of local Artinian algebras in codimension three. Each of the articles brings new results on the boundary of commutative algebra and algebraic geometry.

Syzygies and Hilbert Functions

Syzygies and Hilbert Functions PDF Author: Irena Peeva
Publisher: CRC Press
ISBN: 1420050915
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.

Pick Interpolation and Hilbert Function Spaces

Pick Interpolation and Hilbert Function Spaces PDF Author: Jim Agler
Publisher: American Mathematical Society
ISBN: 1470468557
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.

Projective Varieties with Unexpected Properties

Projective Varieties with Unexpected Properties PDF Author: Ciro Ciliberto
Publisher: Walter de Gruyter
ISBN: 311019970X
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
This volume contains refereed papers related to the lectures and talks given at a conference held in Siena (Italy) in June 2004. Also included are research papers that grew out of discussions among the participants and their collaborators. All the papers are research papers, but some of them also contain expository sections which aim to update the state of the art on the classical subject of special projective varieties and their applications and new trends like phylogenetic algebraic geometry. The topic of secant varieties and the classification of defective varieties is central and ubiquitous in this volume. Besides the intrinsic interest of the subject, it turns out that it is also relevant in other fields of mathematics like expressions of polynomials as sums of powers, polynomial interpolation, rank tensor computations, Bayesian networks, algebraic statistics and number theory.

The Hilbert Function of a Level Algebra

The Hilbert Function of a Level Algebra PDF Author: A. V. Geramita
Publisher: American Mathematical Soc.
ISBN: 9781470404765
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.

Commutative Algebra

Commutative Algebra PDF Author: Irena Peeva
Publisher: Springer Science & Business Media
ISBN: 1461452929
Category : Mathematics
Languages : en
Pages : 705

Get Book Here

Book Description
This contributed volume brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Algebraic Combinatorics, Hyperplane Arrangements, Homological Algebra, and String Theory. The book aims to showcase the area, especially for the benefit of junior mathematicians and researchers who are new to the field; it will aid them in broadening their background and to gain a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.

Extended Abstracts Spring 2015

Extended Abstracts Spring 2015 PDF Author: Dolors Herbera
Publisher: Birkhäuser
ISBN: 3319454412
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest developments in the area. It appeals to established researchers as well as PhD and postdoctoral students who want to learn more about the latest advances in these highly active fields of research.

Commutative Algebra and Its Connections to Geometry

Commutative Algebra and Its Connections to Geometry PDF Author: Alberto Corso
Publisher: American Mathematical Soc.
ISBN: 082184959X
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This volume contains papers based on presentations given at the Pan-American Advanced Studies Institute (PASI) on commutative algebra and its connections to geometry, which was held August 3-14, 2009, at the Universidade Federal de Pernambuco in Olinda, Brazil. The main goal of the program was to detail recent developments in commutative algebra and interactions with such areas as algebraic geometry, combinatorics and computer algebra. The articles in this volume concentrate on topics central to modern commutative algebra: the homological conjectures, problems in positive and mixed characteristic, tight closure and its interaction with birational geometry, integral dependence and blowup algebras, equisingularity theory, Hilbert functions and multiplicities, combinatorial commutative algebra, Grobner bases and computational algebra.

A Celebration of Algebraic Geometry

A Celebration of Algebraic Geometry PDF Author: Brendan Hassett
Publisher: American Mathematical Soc.
ISBN: 0821889834
Category : Mathematics
Languages : en
Pages : 614

Get Book Here

Book Description
This volume resulted from the conference A Celebration of Algebraic Geometry, which was held at Harvard University from August 25-28, 2011, in honor of Joe Harris' 60th birthday. Harris is famous around the world for his lively textbooks and enthusiastic teaching, as well as for his seminal research contributions. The articles are written in this spirit: clear, original, engaging, enlivened by examples, and accessible to young mathematicians. The articles in this volume focus on the moduli space of curves and more general varieties, commutative algebra, invariant theory, enumerative geometry both classical and modern, rationally connected and Fano varieties, Hodge theory and abelian varieties, and Calabi-Yau and hyperkähler manifolds. Taken together, they present a comprehensive view of the long frontier of current knowledge in algebraic geometry. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).