Author: Charles Edward Lucke
Publisher:
ISBN:
Category : Heat-engines
Languages : en
Pages : 244
Book Description
The Heat Engine Problem ...
Author: Charles Edward Lucke
Publisher:
ISBN:
Category : Heat-engines
Languages : en
Pages : 244
Book Description
Publisher:
ISBN:
Category : Heat-engines
Languages : en
Pages : 244
Book Description
College Physics for AP® Courses
Author: Irna Lyublinskaya
Publisher:
ISBN: 9781938168932
Category : Physics
Languages : en
Pages : 1665
Book Description
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
Publisher:
ISBN: 9781938168932
Category : Physics
Languages : en
Pages : 1665
Book Description
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
University Physics
Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Fundamentals of Heat Engines
Author: Jamil Ghojel
Publisher: John Wiley & Sons
ISBN: 1119548764
Category : Technology & Engineering
Languages : en
Pages : 534
Book Description
Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.
Publisher: John Wiley & Sons
ISBN: 1119548764
Category : Technology & Engineering
Languages : en
Pages : 534
Book Description
Summarizes the analysis and design of today’s gas heat engine cycles This book offers readers comprehensive coverage of heat engine cycles. From ideal (theoretical) cycles to practical cycles and real cycles, it gradually increases in degree of complexity so that newcomers can learn and advance at a logical pace, and so instructors can tailor their courses toward each class level. To facilitate the transition from one type of cycle to another, it offers readers additional material covering fundamental engineering science principles in mechanics, fluid mechanics, thermodynamics, and thermochemistry. Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal-Combustion Engines begins with a review of some fundamental principles of engineering science, before covering a wide range of topics on thermochemistry. It next discusses theoretical aspects of the reciprocating piston engine, starting with simple air-standard cycles, followed by theoretical cycles of forced induction engines, and ending with more realistic cycles that can be used to predict engine performance as a first approximation. Lastly, the book looks at gas turbines and covers cycles with gradually increasing complexity to end with realistic engine design-point and off-design calculations methods. Covers two main heat engines in one single reference Teaches heat engine fundamentals as well as advanced topics Includes comprehensive thermodynamic and thermochemistry data Offers customizable content to suit beginner or advanced undergraduate courses and entry-level postgraduate studies in automotive, mechanical, and aerospace degrees Provides representative problems at the end of most chapters, along with a detailed example of piston-engine design-point calculations Features case studies of design-point calculations of gas turbine engines in two chapters Fundamentals of Heat Engines can be adopted for mechanical, aerospace, and automotive engineering courses at different levels and will also benefit engineering professionals in those fields and beyond.
Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics
Author: Daniel Blankschtein
Publisher: Springer Nature
ISBN: 3030491986
Category : Science
Languages : en
Pages : 758
Book Description
This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
Publisher: Springer Nature
ISBN: 3030491986
Category : Science
Languages : en
Pages : 758
Book Description
This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
Heat and Thermodynamics:
Author: Manna
Publisher: Pearson Education India
ISBN: 9332511802
Category : Thermodynamics
Languages : en
Pages : 508
Book Description
Heat and Thermodynamics is meant for an introductory course on Heat and Thermodynamics. Emphasis has been given to the fundamentals of thermodynamics. The book uses variety of diagrams, charts and learning aids to enable easy understanding of the s
Publisher: Pearson Education India
ISBN: 9332511802
Category : Thermodynamics
Languages : en
Pages : 508
Book Description
Heat and Thermodynamics is meant for an introductory course on Heat and Thermodynamics. Emphasis has been given to the fundamentals of thermodynamics. The book uses variety of diagrams, charts and learning aids to enable easy understanding of the s
Theory and Construction of a Rational Heat Motor
Author: Rudolf Diesel
Publisher:
ISBN:
Category : Diesel motor
Languages : en
Pages : 142
Book Description
Publisher:
ISBN:
Category : Diesel motor
Languages : en
Pages : 142
Book Description
Engine Failure Analysis
Author: Ernst Greuter
Publisher: SAE International
ISBN: 0768008859
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Engine failures result from a complex set of conditions, effects, and situations. To understand why engines fail and remedy those failures, one must understand how engine components are designed and manufactured, how they function, and how they interact with other engine components. To this end, this book examines how engine components are designed and how they function, along with their physical and technical properties. Translated from a popular German reference work, this English edition sheds light on determining engine failure and remedies. The authors present a selection of engine failures, investigate and evaluate why they failed, and provide guidance on how to prevent such failures. A large range of possible engine failures is presented in a comprehensive, readily understandable manner, free of manufacturer bias. The scope of engines covered includes general-purpose engines found in heavy commercial vehicles, railway locomotives and vehicles, electrical generators, prime movers, and marine engines. Such engines are technical precursors to automotive engines. This book is for all who deal with engine failures: those who work in repair shops, shipyards, engineering consultancies, insurance companies and technical oversight organizations, as well as R&D departments at engine and component manufacturers. Researchers, academics, and students will learn how even the theoretically impossible can-and will-happen.
Publisher: SAE International
ISBN: 0768008859
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
Engine failures result from a complex set of conditions, effects, and situations. To understand why engines fail and remedy those failures, one must understand how engine components are designed and manufactured, how they function, and how they interact with other engine components. To this end, this book examines how engine components are designed and how they function, along with their physical and technical properties. Translated from a popular German reference work, this English edition sheds light on determining engine failure and remedies. The authors present a selection of engine failures, investigate and evaluate why they failed, and provide guidance on how to prevent such failures. A large range of possible engine failures is presented in a comprehensive, readily understandable manner, free of manufacturer bias. The scope of engines covered includes general-purpose engines found in heavy commercial vehicles, railway locomotives and vehicles, electrical generators, prime movers, and marine engines. Such engines are technical precursors to automotive engines. This book is for all who deal with engine failures: those who work in repair shops, shipyards, engineering consultancies, insurance companies and technical oversight organizations, as well as R&D departments at engine and component manufacturers. Researchers, academics, and students will learn how even the theoretically impossible can-and will-happen.
Problems in General Physics. Mechanics and Thermodynamics
Author: Pierluigi Zotto
Publisher: Società Editrice Esculapio
ISBN:
Category : Science
Languages : en
Pages : 315
Book Description
This collection of exercises proposes a relevant choice of the written tests assigned to the Information Engineering Courses of General Physics in the past Academic Years. An accurate selection of the problems has been done. They have been organised by item with the addition of a largely commented solution with the purpose to provide students with an advanced tool for the preparation for the written part of the examination. Every item is gradually introduced; but a sufficiently deep theoretical knowledge of the matter of study is anyway required in order to correctly understand the presented situations. The proposed problems are the ideal complement to the exercises solved by a Professor while lecturing or the ones offered in theory textbooks as worked out examples or problems to be solved.
Publisher: Società Editrice Esculapio
ISBN:
Category : Science
Languages : en
Pages : 315
Book Description
This collection of exercises proposes a relevant choice of the written tests assigned to the Information Engineering Courses of General Physics in the past Academic Years. An accurate selection of the problems has been done. They have been organised by item with the addition of a largely commented solution with the purpose to provide students with an advanced tool for the preparation for the written part of the examination. Every item is gradually introduced; but a sufficiently deep theoretical knowledge of the matter of study is anyway required in order to correctly understand the presented situations. The proposed problems are the ideal complement to the exercises solved by a Professor while lecturing or the ones offered in theory textbooks as worked out examples or problems to be solved.
Advanced Thermodynamics for Engineers
Author: D. Winterbone
Publisher: Butterworth-Heinemann
ISBN: 0080523366
Category : Science
Languages : en
Pages : 399
Book Description
Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.
Publisher: Butterworth-Heinemann
ISBN: 0080523366
Category : Science
Languages : en
Pages : 399
Book Description
Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.