Author: Julien Danjou
Publisher: Julien Danjou
ISBN: 1387379321
Category : Computers
Languages : en
Pages : 300
Book Description
Python is a wonderful programming language that allows writing applications quickly. But how do you make those applications scale for thousands of users and requests? It takes years of practice, research, trial and errors to build experience and knowledge along the way. Simple questions such as "How do I make my code faster?" or "How do I make sure there is no bottleneck?" cost hours to find good answers. Without enough background on the topic, you'll never be sure that any answer you'll come up with will be correct. The Hacker's Guide to Scaling Python will help you solve that by providing guidelines, tips and best practice. Adding a few interviews of experts on the subject, you will learn how you can distribute your Python application so it is able to process thousands of requests.
The Hacker's Guide to Scaling Python
Author: Julien Danjou
Publisher: Julien Danjou
ISBN: 1387379321
Category : Computers
Languages : en
Pages : 300
Book Description
Python is a wonderful programming language that allows writing applications quickly. But how do you make those applications scale for thousands of users and requests? It takes years of practice, research, trial and errors to build experience and knowledge along the way. Simple questions such as "How do I make my code faster?" or "How do I make sure there is no bottleneck?" cost hours to find good answers. Without enough background on the topic, you'll never be sure that any answer you'll come up with will be correct. The Hacker's Guide to Scaling Python will help you solve that by providing guidelines, tips and best practice. Adding a few interviews of experts on the subject, you will learn how you can distribute your Python application so it is able to process thousands of requests.
Publisher: Julien Danjou
ISBN: 1387379321
Category : Computers
Languages : en
Pages : 300
Book Description
Python is a wonderful programming language that allows writing applications quickly. But how do you make those applications scale for thousands of users and requests? It takes years of practice, research, trial and errors to build experience and knowledge along the way. Simple questions such as "How do I make my code faster?" or "How do I make sure there is no bottleneck?" cost hours to find good answers. Without enough background on the topic, you'll never be sure that any answer you'll come up with will be correct. The Hacker's Guide to Scaling Python will help you solve that by providing guidelines, tips and best practice. Adding a few interviews of experts on the subject, you will learn how you can distribute your Python application so it is able to process thousands of requests.
Serious Python
Author: Julien Danjou
Publisher: No Starch Press
ISBN: 1593278799
Category : Computers
Languages : en
Pages : 242
Book Description
An indispensable collection of practical tips and real-world advice for tackling common Python problems and taking your code to the next level. Features interviews with high-profile Python developers who share their tips, tricks, best practices, and real-world advice gleaned from years of experience. Sharpen your Python skills as you dive deep into the Python programming language with Serious Python. You'll cover a range of advanced topics like multithreading and memorization, get advice from experts on things like designing APIs and dealing with databases, and learn Python internals to help you gain a deeper understanding of the language itself. Written for developers and experienced programmers, Serious Python brings together over 15 years of Python experience to teach you how to avoid common mistakes, write code more efficiently, and build better programs in less time. As you make your way through the book's extensive tutorials, you'll learn how to start a project and tackle topics like versioning, layouts, coding style, and automated checks. You'll learn how to package your software for distribution, optimize performance, use the right data structures, define functions efficiently, pick the right libraries, build future-proof programs, and optimize your programs down to the bytecode. You'll also learn how to: - Make and use effective decorators and methods, including abstract, static, and class methods - Employ Python for functional programming using generators, pure functions, and functional functions - Extend flake8 to work with the abstract syntax tree (AST) to introduce more sophisticated automatic checks into your programs - Apply dynamic performance analysis to identify bottlenecks in your code - Work with relational databases and effectively manage and stream data with PostgreSQL If you've been looking for a way to take your Python skills from good to great, Serious Python will help you get there. Learn from the experts and get seriously good at Python with Serious Python!
Publisher: No Starch Press
ISBN: 1593278799
Category : Computers
Languages : en
Pages : 242
Book Description
An indispensable collection of practical tips and real-world advice for tackling common Python problems and taking your code to the next level. Features interviews with high-profile Python developers who share their tips, tricks, best practices, and real-world advice gleaned from years of experience. Sharpen your Python skills as you dive deep into the Python programming language with Serious Python. You'll cover a range of advanced topics like multithreading and memorization, get advice from experts on things like designing APIs and dealing with databases, and learn Python internals to help you gain a deeper understanding of the language itself. Written for developers and experienced programmers, Serious Python brings together over 15 years of Python experience to teach you how to avoid common mistakes, write code more efficiently, and build better programs in less time. As you make your way through the book's extensive tutorials, you'll learn how to start a project and tackle topics like versioning, layouts, coding style, and automated checks. You'll learn how to package your software for distribution, optimize performance, use the right data structures, define functions efficiently, pick the right libraries, build future-proof programs, and optimize your programs down to the bytecode. You'll also learn how to: - Make and use effective decorators and methods, including abstract, static, and class methods - Employ Python for functional programming using generators, pure functions, and functional functions - Extend flake8 to work with the abstract syntax tree (AST) to introduce more sophisticated automatic checks into your programs - Apply dynamic performance analysis to identify bottlenecks in your code - Work with relational databases and effectively manage and stream data with PostgreSQL If you've been looking for a way to take your Python skills from good to great, Serious Python will help you get there. Learn from the experts and get seriously good at Python with Serious Python!
Machine Learning for Hackers
Author: Drew Conway
Publisher: "O'Reilly Media, Inc."
ISBN: 1449330533
Category : Computers
Languages : en
Pages : 323
Book Description
If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data
Publisher: "O'Reilly Media, Inc."
ISBN: 1449330533
Category : Computers
Languages : en
Pages : 323
Book Description
If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data
The Hacker's Guide to Python
Author: Julien Danjou
Publisher: Julien Danjou
ISBN:
Category :
Languages : en
Pages : 290
Book Description
Python is a wonderful programming language that is being used more and more in many different industries. It is fast, flexible, and it comes with batteries included. Most of the books you read about Python will teach you the language basics – but once you've learnt them, you’re on your own in designing your application and discovering best practice. In this book, we'll see how you can leverage Python to efficiently tackle your problems and build great Python applications.
Publisher: Julien Danjou
ISBN:
Category :
Languages : en
Pages : 290
Book Description
Python is a wonderful programming language that is being used more and more in many different industries. It is fast, flexible, and it comes with batteries included. Most of the books you read about Python will teach you the language basics – but once you've learnt them, you’re on your own in designing your application and discovering best practice. In this book, we'll see how you can leverage Python to efficiently tackle your problems and build great Python applications.
Python for Scientists
Author: John M. Stewart
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272
Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272
Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Python for Data Analysis
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553
Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553
Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Architecture Patterns with Python
Author: Harry Percival
Publisher: O'Reilly Media
ISBN: 1492052175
Category : Computers
Languages : en
Pages : 304
Book Description
As Python continues to grow in popularity, projects are becoming larger and more complex. Many Python developers are now taking an interest in high-level software design patterns such as hexagonal/clean architecture, event-driven architecture, and the strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn’t always straightforward. With this hands-on guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity—and get the most value out of their test suites. Each pattern is illustrated with concrete examples in beautiful, idiomatic Python, avoiding some of the verbosity of Java and C# syntax. Patterns include: Dependency inversion and its links to ports and adapters (hexagonal/clean architecture) Domain-driven design’s distinction between entities, value objects, and aggregates Repository and Unit of Work patterns for persistent storage Events, commands, and the message bus Command-query responsibility segregation (CQRS) Event-driven architecture and reactive microservices
Publisher: O'Reilly Media
ISBN: 1492052175
Category : Computers
Languages : en
Pages : 304
Book Description
As Python continues to grow in popularity, projects are becoming larger and more complex. Many Python developers are now taking an interest in high-level software design patterns such as hexagonal/clean architecture, event-driven architecture, and the strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn’t always straightforward. With this hands-on guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity—and get the most value out of their test suites. Each pattern is illustrated with concrete examples in beautiful, idiomatic Python, avoiding some of the verbosity of Java and C# syntax. Patterns include: Dependency inversion and its links to ports and adapters (hexagonal/clean architecture) Domain-driven design’s distinction between entities, value objects, and aggregates Repository and Unit of Work patterns for persistent storage Events, commands, and the message bus Command-query responsibility segregation (CQRS) Event-driven architecture and reactive microservices
Machine Learning
Author: Jason Bell
Publisher: John Wiley & Sons
ISBN: 1119642191
Category : Mathematics
Languages : en
Pages : 497
Book Description
Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Publisher: John Wiley & Sons
ISBN: 1119642191
Category : Mathematics
Languages : en
Pages : 497
Book Description
Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Clean Code in Python
Author: Mariano Anaya
Publisher: Packt Publishing Ltd
ISBN: 1800562098
Category : Computers
Languages : en
Pages : 423
Book Description
Tackle inefficiencies and errors the Pythonic way Key Features Enhance your coding skills using the new features introduced in Python 3.9 Implement the refactoring techniques and SOLID principles in Python Apply microservices to your legacy systems by implementing practical techniques Book Description Experienced professionals in every field face several instances of disorganization, poor readability, and testability due to unstructured code. With updated code and revised content aligned to the new features of Python 3.9, this second edition of Clean Code in Python will provide you with all the tools you need to overcome these obstacles and manage your projects successfully. The book begins by describing the basic elements of writing clean code and how it plays a key role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. The book discusses object-oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve problems by implementing software design patterns in your code. In the concluding chapter, we break down a monolithic application into a microservices-based one starting from the code as the basis for a solid platform. By the end of this clean code book, you will be proficient in applying industry-approved coding practices to design clean, sustainable, and readable real-world Python code. What you will learn Set up a productive development environment by leveraging automatic tools Leverage the magic methods in Python to write better code, abstracting complexity away and encapsulating details Create advanced object-oriented designs using unique features of Python, such as descriptors Eliminate duplicated code by creating powerful abstractions using software engineering principles of object-oriented design Create Python-specific solutions using decorators and descriptors Refactor code effectively with the help of unit tests Build the foundations for solid architecture with a clean code base as its cornerstone Who this book is for This book is designed to benefit new as well as experienced programmers. It will appeal to team leads, software architects and senior software engineers who would like to write Pythonic code to save on costs and improve efficiency. The book assumes that you have a strong understanding of programming
Publisher: Packt Publishing Ltd
ISBN: 1800562098
Category : Computers
Languages : en
Pages : 423
Book Description
Tackle inefficiencies and errors the Pythonic way Key Features Enhance your coding skills using the new features introduced in Python 3.9 Implement the refactoring techniques and SOLID principles in Python Apply microservices to your legacy systems by implementing practical techniques Book Description Experienced professionals in every field face several instances of disorganization, poor readability, and testability due to unstructured code. With updated code and revised content aligned to the new features of Python 3.9, this second edition of Clean Code in Python will provide you with all the tools you need to overcome these obstacles and manage your projects successfully. The book begins by describing the basic elements of writing clean code and how it plays a key role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. The book discusses object-oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve problems by implementing software design patterns in your code. In the concluding chapter, we break down a monolithic application into a microservices-based one starting from the code as the basis for a solid platform. By the end of this clean code book, you will be proficient in applying industry-approved coding practices to design clean, sustainable, and readable real-world Python code. What you will learn Set up a productive development environment by leveraging automatic tools Leverage the magic methods in Python to write better code, abstracting complexity away and encapsulating details Create advanced object-oriented designs using unique features of Python, such as descriptors Eliminate duplicated code by creating powerful abstractions using software engineering principles of object-oriented design Create Python-specific solutions using decorators and descriptors Refactor code effectively with the help of unit tests Build the foundations for solid architecture with a clean code base as its cornerstone Who this book is for This book is designed to benefit new as well as experienced programmers. It will appeal to team leads, software architects and senior software engineers who would like to write Pythonic code to save on costs and improve efficiency. The book assumes that you have a strong understanding of programming
Web Application Security
Author: Andrew Hoffman
Publisher: O'Reilly Media
ISBN: 1492053082
Category : Computers
Languages : en
Pages : 330
Book Description
While many resources for network and IT security are available, detailed knowledge regarding modern web application security has been lacking—until now. This practical guide provides both offensive and defensive security concepts that software engineers can easily learn and apply. Andrew Hoffman, a senior security engineer at Salesforce, introduces three pillars of web application security: recon, offense, and defense. You’ll learn methods for effectively researching and analyzing modern web applications—including those you don’t have direct access to. You’ll also learn how to break into web applications using the latest hacking techniques. Finally, you’ll learn how to develop mitigations for use in your own web applications to protect against hackers. Explore common vulnerabilities plaguing today's web applications Learn essential hacking techniques attackers use to exploit applications Map and document web applications for which you don’t have direct access Develop and deploy customized exploits that can bypass common defenses Develop and deploy mitigations to protect your applications against hackers Integrate secure coding best practices into your development lifecycle Get practical tips to help you improve the overall security of your web applications
Publisher: O'Reilly Media
ISBN: 1492053082
Category : Computers
Languages : en
Pages : 330
Book Description
While many resources for network and IT security are available, detailed knowledge regarding modern web application security has been lacking—until now. This practical guide provides both offensive and defensive security concepts that software engineers can easily learn and apply. Andrew Hoffman, a senior security engineer at Salesforce, introduces three pillars of web application security: recon, offense, and defense. You’ll learn methods for effectively researching and analyzing modern web applications—including those you don’t have direct access to. You’ll also learn how to break into web applications using the latest hacking techniques. Finally, you’ll learn how to develop mitigations for use in your own web applications to protect against hackers. Explore common vulnerabilities plaguing today's web applications Learn essential hacking techniques attackers use to exploit applications Map and document web applications for which you don’t have direct access Develop and deploy customized exploits that can bypass common defenses Develop and deploy mitigations to protect your applications against hackers Integrate secure coding best practices into your development lifecycle Get practical tips to help you improve the overall security of your web applications