The Geometry of Spherical Space Form Groups

The Geometry of Spherical Space Form Groups PDF Author: Peter B. Gilkey
Publisher: World Scientific
ISBN: 9789971509279
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups.There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds.This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysists wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students.

The Geometry of Spherical Space Form Groups

The Geometry of Spherical Space Form Groups PDF Author: Peter B. Gilkey
Publisher: World Scientific
ISBN: 9789971509279
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups.There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds.This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysists wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students.

Geometry Of Spherical Space Form Groups, The (Second Edition)

Geometry Of Spherical Space Form Groups, The (Second Edition) PDF Author: Peter B Gilkey
Publisher: World Scientific
ISBN: 9813220805
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
This volume focuses on discussing the interplay between the analysis, as exemplified by the eta invariant and other spectral invariants, the number theory, as exemplified by the relevant Dedekind sums and Rademacher reciprocity, the algebraic topology, as exemplified by the equivariant bordism groups, K-theory groups, and connective K-theory groups, and the geometry of spherical space forms, as exemplified by the Smith homomorphism. These are used to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group.This volume is a completely rewritten revision of the first edition. The underlying organization is modified to provide a better organized and more coherent treatment of the material involved. In addition, approximately 100 pages have been added to study the existence of metrics of positive scalar curvature on spin manifolds of dimension at least 5 whose fundamental group is a spherical space form group. We have chosen to focus on the geometric aspect of the theory rather than more abstract algebraic constructions (like the assembly map) and to restrict our attention to spherical space forms rather than more general and more complicated geometrical examples to avoid losing contact with the fundamental geometry which is involved.

The Geometry of Spherical Space Form Groups

The Geometry of Spherical Space Form Groups PDF Author: Peter B. Gilkey
Publisher:
ISBN: 9789813220799
Category : MATHEMATICS
Languages : en
Pages :

Get Book Here

Book Description


Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture

Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture PDF Author: Peter B. Gilkey
Publisher: CRC Press
ISBN: 9780849382772
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
This cutting-edge, standard-setting text explores the spectral geometry of Riemannian submersions. Working for the most part with the form valued Laplacian in the class of smooth compact manifolds without boundary, the authors study the relationship-if any-between the spectrum of Dp on Y and Dp on Z, given that Dp is the p form valued Laplacian and pi: Z ® Y is a Riemannian submersion. After providing the necessary background, including basic differential geometry and a discussion of Laplace type operators, the authors address rigidity theorems. They establish conditions that ensure that the pull back of every eigenform on Y is an eigenform on Z so the eigenvalues do not change, then show that if a single eigensection is preserved, the eigenvalues do not change for the scalar or Bochner Laplacians. For the form valued Laplacian, they show that if an eigenform is preserved, then the corresponding eigenvalue can only increase. They generalize these results to the complex setting as well. However, the spinor setting is quite different. For a manifold with non-trivial boundary and imposed Neumann boundary conditions, the result is surprising-the eigenvalues can change. Although this is a relatively rare phenomenon, the authors give examples-a circle bundle or, more generally, a principal bundle with structure group G where the first cohomology group H1(G;R) is non trivial. They show similar results in the complex setting, show that eigenvalues can decrease in the spinor setting, and offer a list of unsolved problems in this area. Moving to some related topics involving questions of positive curvature, for the first time in mathematical literature the authors establish a link between the spectral geometry of Riemannian submersions and the Gromov-Lawson conjecture. Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture addresses a hot research area and promises to set a standard for the field. Researchers and applied mathematicians interested in mathematical physics and relativity will find this work both fascinating and important.

Geometry, Topology and Physics

Geometry, Topology and Physics PDF Author: Boris N. Apanasov
Publisher: Walter de Gruyter
ISBN: 3110805057
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Invariance Theory

Invariance Theory PDF Author: Peter B. Gilkey
Publisher: CRC Press
ISBN: 1351436422
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The author uses invariance theory to identify the integrand of the index theorem for classical elliptic complexes with the invariants of the heat equation.

Handbook of Differential Geometry, Volume 1

Handbook of Differential Geometry, Volume 1 PDF Author: F.J.E. Dillen
Publisher: Elsevier
ISBN: 0080532837
Category : Mathematics
Languages : en
Pages : 1067

Get Book Here

Book Description
In the series of volumes which together will constitute the Handbook of Differential Geometry a rather complete survey of the field of differential geometry is given. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent). All chapters are written by experts in the area and contain a large bibliography.

The Geometry and Topology of Coxeter Groups

The Geometry and Topology of Coxeter Groups PDF Author: Michael Davis
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

Spaces of Constant Curvature

Spaces of Constant Curvature PDF Author: Joseph A. Wolf
Publisher: American Mathematical Society
ISBN: 1470473658
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This book is the sixth edition of the classic Spaces of Constant Curvature, first published in 1967, with the previous (fifth) edition published in 1984. It illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds and their curvatures, of the representation theory of finite groups, and of indications of recent progress in discrete subgroups of Lie groups. Part I is a brief introduction to differentiable manifolds, covering spaces, and riemannian and pseudo-riemannian geometry. It also contains a certain amount of introductory material on symmetry groups and space forms, indicating the direction of the later chapters. Part II is an updated treatment of euclidean space form. Part III is Wolf's classic solution to the Clifford–Klein Spherical Space Form Problem. It starts with an exposition of the representation theory of finite groups. Part IV introduces riemannian symmetric spaces and extends considerations of spherical space forms to space forms of riemannian symmetric spaces. Finally, Part V examines space form problems on pseudo-riemannian symmetric spaces. At the end of Chapter 12 there is a new appendix describing some of the recent work on discrete subgroups of Lie groups with application to space forms of pseudo-riemannian symmetric spaces. Additional references have been added to this sixth edition as well.

Mathematics Unlimited - 2001 and Beyond

Mathematics Unlimited - 2001 and Beyond PDF Author: Björn Engquist
Publisher: Springer
ISBN: 364256478X
Category : Mathematics
Languages : en
Pages : 1219

Get Book Here

Book Description
This is a book guaranteed to delight the reader. It not only depicts the state of mathematics at the end of the century, but is also full of remarkable insights into its future de- velopment as we enter a new millennium. True to its title, the book extends beyond the spectrum of mathematics to in- clude contributions from other related sciences. You will enjoy reading the many stimulating contributions and gain insights into the astounding progress of mathematics and the perspectives for its future. One of the editors, Björn Eng- quist, is a world-renowned researcher in computational sci- ence and engineering. The second editor, Wilfried Schmid, is a distinguished mathematician at Harvard University. Likewi- se the authors are all foremost mathematicians and scien- tists, and their biographies and photographs appear at the end of the book. Unique in both form and content, this is a "must-read" for every mathematician and scientist and, in particular, for graduates still choosing their specialty. Limited collector's edition - an exclusive and timeless work. This special, numbered edition will be available until June 1, 2000. Firm orders only.