Author: Misha Kapovich
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra
Author: Misha Kapovich
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra
Author: Michael Kapovich
Publisher: American Mathematical Soc.
ISBN: 0821840541
Category : Mathematics
Languages : en
Pages : 98
Book Description
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
Publisher: American Mathematical Soc.
ISBN: 0821840541
Category : Mathematics
Languages : en
Pages : 98
Book Description
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra
Author: Michael Kapovich
Publisher: American Mathematical Society(RI)
ISBN: 9781470405021
Category : Geometric group theory
Languages : en
Pages : 98
Book Description
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
Publisher: American Mathematical Society(RI)
ISBN: 9781470405021
Category : Geometric group theory
Languages : en
Pages : 98
Book Description
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings
Author: Wolfgang Bertram
Publisher: American Mathematical Soc.
ISBN: 0821840916
Category : Mathematics
Languages : en
Pages : 218
Book Description
The aim of this work is to lay the foundations of differential geometry and Lie theory over the general class of topological base fields and -rings for which a differential calculus has been developed, without any restriction on the dimension or on the characteristic. Two basic features distinguish the author's approach from the classical real (finite or infinite dimensional) theory, namely the interpretation of tangent- and jet functors as functors of scalar extensions and the introduction of multilinear bundles and multilinear connections which generalize the concept of vector bundles and linear connections.
Publisher: American Mathematical Soc.
ISBN: 0821840916
Category : Mathematics
Languages : en
Pages : 218
Book Description
The aim of this work is to lay the foundations of differential geometry and Lie theory over the general class of topological base fields and -rings for which a differential calculus has been developed, without any restriction on the dimension or on the characteristic. Two basic features distinguish the author's approach from the classical real (finite or infinite dimensional) theory, namely the interpretation of tangent- and jet functors as functors of scalar extensions and the introduction of multilinear bundles and multilinear connections which generalize the concept of vector bundles and linear connections.
Invariant Differential Operators for Quantum Symmetric Spaces
Author: Gail Letzter
Publisher: American Mathematical Soc.
ISBN: 0821841319
Category : Mathematics
Languages : en
Pages : 104
Book Description
This paper studies quantum invariant differential operators for quantum symmetric spaces in the maximally split case. The main results are quantum versions of theorems of Harish-Chandra and Helgason: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and the ring of invariants of a certain Laurent polynomial ring under an action of the restricted Weyl group. Moreover, the image of the center under this map is the entire invariant ring if and only if the underlying irreducible symmetric pair is not of four exceptional types. In the process, the author finds a particularly nice basis for the quantum invariant differential operators that provides a new interpretation of difference operators associated to Macdonald polynomials.
Publisher: American Mathematical Soc.
ISBN: 0821841319
Category : Mathematics
Languages : en
Pages : 104
Book Description
This paper studies quantum invariant differential operators for quantum symmetric spaces in the maximally split case. The main results are quantum versions of theorems of Harish-Chandra and Helgason: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and the ring of invariants of a certain Laurent polynomial ring under an action of the restricted Weyl group. Moreover, the image of the center under this map is the entire invariant ring if and only if the underlying irreducible symmetric pair is not of four exceptional types. In the process, the author finds a particularly nice basis for the quantum invariant differential operators that provides a new interpretation of difference operators associated to Macdonald polynomials.
The Breadth of Symplectic and Poisson Geometry
Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666
Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666
Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
Lie Groups and Symmetric Spaces
Author: Semen Grigorʹevich Gindikin
Publisher: American Mathematical Soc.
ISBN: 9780821834725
Category : Geometry, Differential
Languages : en
Pages : 372
Book Description
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.
Publisher: American Mathematical Soc.
ISBN: 9780821834725
Category : Geometry, Differential
Languages : en
Pages : 372
Book Description
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.
Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules
Author: Andr Martinez
Publisher: American Mathematical Soc.
ISBN: 082184296X
Category : Mathematics
Languages : en
Pages : 96
Book Description
The authors construct an abstract pseudodifferential calculus with operator-valued symbol, suitable for the treatment of Coulomb-type interactions, and they apply it to the study of the quantum evolution of molecules in the Born-Oppenheimer approximation, in the case of the electronic Hamiltonian admitting a local gap in its spectrum. In particular, they show that the molecular evolution can be reduced to the one of a system of smooth semiclassical operators, the symbol of which can be computed explicitely. In addition, they study the propagation of certain wave packets up to long time values of Ehrenfest order.
Publisher: American Mathematical Soc.
ISBN: 082184296X
Category : Mathematics
Languages : en
Pages : 96
Book Description
The authors construct an abstract pseudodifferential calculus with operator-valued symbol, suitable for the treatment of Coulomb-type interactions, and they apply it to the study of the quantum evolution of molecules in the Born-Oppenheimer approximation, in the case of the electronic Hamiltonian admitting a local gap in its spectrum. In particular, they show that the molecular evolution can be reduced to the one of a system of smooth semiclassical operators, the symbol of which can be computed explicitely. In addition, they study the propagation of certain wave packets up to long time values of Ehrenfest order.
Torus Fibrations, Gerbes, and Duality
Author: Ron Donagi
Publisher: American Mathematical Soc.
ISBN: 0821840924
Category : Mathematics
Languages : en
Pages : 104
Book Description
Let $X$ be a smooth elliptic fibration over a smooth base $B$. Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an $\mathcal{O} DEGREES{\times}$ gerbe over a genus one fibration which is a twisted form
Publisher: American Mathematical Soc.
ISBN: 0821840924
Category : Mathematics
Languages : en
Pages : 104
Book Description
Let $X$ be a smooth elliptic fibration over a smooth base $B$. Under mild assumptions, the authors establish a Fourier-Mukai equivalence between the derived categories of two objects, each of which is an $\mathcal{O} DEGREES{\times}$ gerbe over a genus one fibration which is a twisted form
Rank One Higgs Bundles and Representations of Fundamental Groups of Riemann Surfaces
Author: William Mark Goldman
Publisher: American Mathematical Soc.
ISBN: 082184136X
Category : Mathematics
Languages : en
Pages : 86
Book Description
This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.
Publisher: American Mathematical Soc.
ISBN: 082184136X
Category : Mathematics
Languages : en
Pages : 86
Book Description
This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.