Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 1107106303
Category : Science
Languages : en
Pages : 217
Book Description
Presents the fundamentals of gas dynamics for graduate students and researchers in the subject.
The Gas Dynamics of Explosions
Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 1107106303
Category : Science
Languages : en
Pages : 217
Book Description
Presents the fundamentals of gas dynamics for graduate students and researchers in the subject.
Publisher: Cambridge University Press
ISBN: 1107106303
Category : Science
Languages : en
Pages : 217
Book Description
Presents the fundamentals of gas dynamics for graduate students and researchers in the subject.
The Gas Dynamics of Explosions
Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 1316592081
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.
Publisher: Cambridge University Press
ISBN: 1316592081
Category : Technology & Engineering
Languages : en
Pages : 217
Book Description
Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.
Introduction to Gasdynamics of Explosions
Author: A. K. Oppenheim
Publisher: Springer
ISBN: 3709143640
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
Publisher: Springer
ISBN: 3709143640
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
Shock Waves & Explosions
Author: P.L. Sachdev
Publisher: CRC Press
ISBN: 1420035193
Category : Mathematics
Languages : en
Pages : 291
Book Description
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods
Publisher: CRC Press
ISBN: 1420035193
Category : Mathematics
Languages : en
Pages : 291
Book Description
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods
Dynamics of Detonations and Explosions
Author:
Publisher: AIAA
ISBN: 9781600863875
Category : Detonation waves
Languages : en
Pages : 422
Book Description
Publisher: AIAA
ISBN: 9781600863875
Category : Detonation waves
Languages : en
Pages : 422
Book Description
Gasdynamics of Explosions and Reactive Systems
Author: A. K. Oppenheim
Publisher: Elsevier
ISBN: 1483150054
Category : Science
Languages : en
Pages : 787
Book Description
Gas Dynamics of Explosions and Reactive Systems documents the proceedings of the 6th Colloquium held at the Royal Institute of Technology in Stockholm, Sweden, 22-26 August 1977. The meeting was held under the auspices of the Royal Swedish Academy of Sciences and the International Academy of Astronautics. The scientific program included over one hundred papers. The contributions in this volume are organized into four parts. Part I contains papers on gaseous detonations. It covers topics such as theoretical model of a detonation cell; spherical detonations in hydrocarbon-air mixtures; and shock wave propagation in tubes filled with water foams. Part II presents studies on explosions, such as the detonation of hydrogen azide and propagation of a laser-supported detonation wave. Part III examines condensed phase detonations. It includes papers on the mechanism of the divergent and convergent dark waves originating at the charge boundary in detonating liquid homogeneous explosives with unstable detonation front; and initiation studies in sensitized nitromethane. Part IV presents discussions on turbulent detonations, covering topics such as the computational aspects of turbulent combustion and problems and techniques in turbulent reactive systems.
Publisher: Elsevier
ISBN: 1483150054
Category : Science
Languages : en
Pages : 787
Book Description
Gas Dynamics of Explosions and Reactive Systems documents the proceedings of the 6th Colloquium held at the Royal Institute of Technology in Stockholm, Sweden, 22-26 August 1977. The meeting was held under the auspices of the Royal Swedish Academy of Sciences and the International Academy of Astronautics. The scientific program included over one hundred papers. The contributions in this volume are organized into four parts. Part I contains papers on gaseous detonations. It covers topics such as theoretical model of a detonation cell; spherical detonations in hydrocarbon-air mixtures; and shock wave propagation in tubes filled with water foams. Part II presents studies on explosions, such as the detonation of hydrogen azide and propagation of a laser-supported detonation wave. Part III examines condensed phase detonations. It includes papers on the mechanism of the divergent and convergent dark waves originating at the charge boundary in detonating liquid homogeneous explosives with unstable detonation front; and initiation studies in sensitized nitromethane. Part IV presents discussions on turbulent detonations, covering topics such as the computational aspects of turbulent combustion and problems and techniques in turbulent reactive systems.
Modeling Explosions and Blast Waves
Author: K. Ramamurthi
Publisher: Springer Nature
ISBN: 3030743381
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
b="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
Publisher: Springer Nature
ISBN: 3030743381
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
b="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
The Dynamics of Explosion and Its Use
Author: Josef Henrych
Publisher: Elsevier Science & Technology
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 572
Book Description
Publisher: Elsevier Science & Technology
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 572
Book Description
Dust Explosion Dynamics
Author: Russell A. Ogle
Publisher: Butterworth-Heinemann
ISBN: 0128038292
Category : Technology & Engineering
Languages : en
Pages : 687
Book Description
Dust Explosion Dynamics focuses on the combustion science that governs the behavior of the three primary hazards of combustible dust: dust explosions, flash fires, and smoldering. It explores the use of fundamental principles to evaluate the magnitude of combustible dust hazards in a variety of settings. Models are developed to describe dust combustion phenomena using the principles of thermodynamics, transport phenomena, and chemical kinetics. Simple, tractable models are described first and compared with experimental data, followed by more sophisticated models to help with future challenges. Dr. Ogle introduces the reader to just enough combustion science so that they may read, interpret, and use the scientific literature published on combustible dusts. This introductory text is intended to be a practical guide to the application of combustible dust models, suitable for both students and experienced engineers. It will help you to describe the dynamics of explosions and fires involving dust and evaluate their consequences which in turn will help you prevent damage to property, injury and loss of life from combustible dust accidents. - Demonstrates how the fundamental principles of combustion science can be applied to understand the ignition, propagation, and extinction of dust explosions - Explores fundamental concepts through model-building and comparisons with empirical data - Provides detailed examples to give a thorough insight into the hazards of combustible dust as well as an introduction to relevant scientific literature
Publisher: Butterworth-Heinemann
ISBN: 0128038292
Category : Technology & Engineering
Languages : en
Pages : 687
Book Description
Dust Explosion Dynamics focuses on the combustion science that governs the behavior of the three primary hazards of combustible dust: dust explosions, flash fires, and smoldering. It explores the use of fundamental principles to evaluate the magnitude of combustible dust hazards in a variety of settings. Models are developed to describe dust combustion phenomena using the principles of thermodynamics, transport phenomena, and chemical kinetics. Simple, tractable models are described first and compared with experimental data, followed by more sophisticated models to help with future challenges. Dr. Ogle introduces the reader to just enough combustion science so that they may read, interpret, and use the scientific literature published on combustible dusts. This introductory text is intended to be a practical guide to the application of combustible dust models, suitable for both students and experienced engineers. It will help you to describe the dynamics of explosions and fires involving dust and evaluate their consequences which in turn will help you prevent damage to property, injury and loss of life from combustible dust accidents. - Demonstrates how the fundamental principles of combustion science can be applied to understand the ignition, propagation, and extinction of dust explosions - Explores fundamental concepts through model-building and comparisons with empirical data - Provides detailed examples to give a thorough insight into the hazards of combustible dust as well as an introduction to relevant scientific literature
Introduction to Physics and Chemistry of Combustion
Author: Michael A. Liberman
Publisher: Springer Science & Business Media
ISBN: 3540787593
Category : Science
Languages : en
Pages : 368
Book Description
Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.
Publisher: Springer Science & Business Media
ISBN: 3540787593
Category : Science
Languages : en
Pages : 368
Book Description
Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and with premixed gas combustion. Premixed gas combustion is of practical importance in engines, modern gas turbine and explosions, where the fuel and air are essentially premixed, and combustion occurs by the propagation of a front separating unburned mixture from fully burned mixture. Since premixed combustion is the most fundamental and potential for practical applications, the emphasis in the present work is be placed on regimes of premixed combustion. This text is intended for graduate students of different specialties, including physics, chemistry, mechanical engineering, computer science, mathematics and astrophysics.