Author: Emil Artin
Publisher: Courier Dover Publications
ISBN: 0486803007
Category : Mathematics
Languages : en
Pages : 52
Book Description
This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, "I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus." Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.
The Gamma Function
Author: Emil Artin
Publisher: Courier Dover Publications
ISBN: 0486803007
Category : Mathematics
Languages : en
Pages : 52
Book Description
This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, "I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus." Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.
Publisher: Courier Dover Publications
ISBN: 0486803007
Category : Mathematics
Languages : en
Pages : 52
Book Description
This brief monograph on the gamma function was designed by the author to fill what he perceived as a gap in the literature of mathematics, which often treated the gamma function in a manner he described as both sketchy and overly complicated. Author Emil Artin, one of the twentieth century's leading mathematicians, wrote in his Preface to this book, "I feel that this monograph will help to show that the gamma function can be thought of as one of the elementary functions, and that all of its basic properties can be established using elementary methods of the calculus." Generations of teachers and students have benefitted from Artin's masterly arguments and precise results. Suitable for advanced undergraduates and graduate students of mathematics, his treatment examines functions, the Euler integrals and the Gauss formula, large values of x and the multiplication formula, the connection with sin x, applications to definite integrals, and other subjects.
The Gamma Function
Author: James Bonnar
Publisher: Independently Published
ISBN: 9781677804863
Category :
Languages : en
Pages : 161
Book Description
This book is dedicated to the subject of the Gamma function and related topics. The Gamma Function is primarily intended for advanced undergraduates in science and mathematics. It is concise yet thorough and covers each of the most important aspects of the Gamma function. The Gamma function has important applications in probability theory, combinatorics and most, if not all, areas of physics. A large number of proofs and derivations of theorems and identities are covered in the book including: Analytic continuation of the factorials, properties via complex analysis, Holder's theorem, the Bohr-Mullerup theorem, the Beta function, Wallis's integrals, Wallis's product, product & reflection formulas, half-integer values, digamma and polygamma functions, series expansions, Euler-Mascheroni integrals, duplication & multiplication formulas, the Gamma and zeta function relationships, Hankel's contour integral representation, Stirling's formula, the Weierstrass factor theorem and the Mittag-Leffler theorem.
Publisher: Independently Published
ISBN: 9781677804863
Category :
Languages : en
Pages : 161
Book Description
This book is dedicated to the subject of the Gamma function and related topics. The Gamma Function is primarily intended for advanced undergraduates in science and mathematics. It is concise yet thorough and covers each of the most important aspects of the Gamma function. The Gamma function has important applications in probability theory, combinatorics and most, if not all, areas of physics. A large number of proofs and derivations of theorems and identities are covered in the book including: Analytic continuation of the factorials, properties via complex analysis, Holder's theorem, the Bohr-Mullerup theorem, the Beta function, Wallis's integrals, Wallis's product, product & reflection formulas, half-integer values, digamma and polygamma functions, series expansions, Euler-Mascheroni integrals, duplication & multiplication formulas, the Gamma and zeta function relationships, Hankel's contour integral representation, Stirling's formula, the Weierstrass factor theorem and the Mittag-Leffler theorem.
On a Class of Incomplete Gamma Functions with Applications
Author: M. Aslam Chaudhry
Publisher: CRC Press
ISBN: 1420036041
Category : Mathematics
Languages : en
Pages : 515
Book Description
The subject of special functions is rich and expanding continuously with the emergence of new problems encountered in engineering and applied science applications. The development of computational techniques and the rapid growth in computing power have increased the importance of the special functions and their formulae for analytic representations
Publisher: CRC Press
ISBN: 1420036041
Category : Mathematics
Languages : en
Pages : 515
Book Description
The subject of special functions is rich and expanding continuously with the emergence of new problems encountered in engineering and applied science applications. The development of computational techniques and the rapid growth in computing power have increased the importance of the special functions and their formulae for analytic representations
The Gamma and Beta Functions
Author: William Edwards Deming
Publisher:
ISBN:
Category : Beta functions
Languages : en
Pages : 42
Book Description
Publisher:
ISBN:
Category : Beta functions
Languages : en
Pages : 42
Book Description
Orthogonal Polynomials
Author: Mama Foupouagnigni
Publisher: Springer Nature
ISBN: 3030367444
Category : Mathematics
Languages : en
Pages : 683
Book Description
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Publisher: Springer Nature
ISBN: 3030367444
Category : Mathematics
Languages : en
Pages : 683
Book Description
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
How Euler Did Even More
Author: C. Edward Sandifer
Publisher: The Mathematical Association of America
ISBN: 0883855844
Category : Mathematics
Languages : en
Pages : 254
Book Description
Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.
Publisher: The Mathematical Association of America
ISBN: 0883855844
Category : Mathematics
Languages : en
Pages : 254
Book Description
Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.
Integral Evaluations Using the Gamma and Beta Functions and Elliptic Integrals in Engineering
Author: Constantin C. Maican
Publisher:
ISBN: 9781571462626
Category : Beta functions
Languages : en
Pages : 318
Book Description
Publisher:
ISBN: 9781571462626
Category : Beta functions
Languages : en
Pages : 318
Book Description
Complex Variables with Applications
Author: Saminathan Ponnusamy
Publisher: Springer Science & Business Media
ISBN: 0817645136
Category : Mathematics
Languages : en
Pages : 521
Book Description
Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students
Publisher: Springer Science & Business Media
ISBN: 0817645136
Category : Mathematics
Languages : en
Pages : 521
Book Description
Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students
An Introduction to Infinite Products
Author: Charles H. C. Little
Publisher: Springer Nature
ISBN: 3030906469
Category : Mathematics
Languages : en
Pages : 258
Book Description
This text provides a detailed presentation of the main results for infinite products, as well as several applications. The target readership is a student familiar with the basics of real analysis of a single variable and a first course in complex analysis up to and including the calculus of residues. The book provides a detailed treatment of the main theoretical results and applications with a goal of providing the reader with a short introduction and motivation for present and future study. While the coverage does not include an exhaustive compilation of results, the reader will be armed with an understanding of infinite products within the course of more advanced studies, and, inspired by the sheer beauty of the mathematics. The book will serve as a reference for students of mathematics, physics and engineering, at the level of senior undergraduate or beginning graduate level, who want to know more about infinite products. It will also be of interest to instructors who teach courses that involve infinite products as well as mathematicians who wish to dive deeper into the subject. One could certainly design a special-topics class based on this book for undergraduates. The exercises give the reader a good opportunity to test their understanding of each section.
Publisher: Springer Nature
ISBN: 3030906469
Category : Mathematics
Languages : en
Pages : 258
Book Description
This text provides a detailed presentation of the main results for infinite products, as well as several applications. The target readership is a student familiar with the basics of real analysis of a single variable and a first course in complex analysis up to and including the calculus of residues. The book provides a detailed treatment of the main theoretical results and applications with a goal of providing the reader with a short introduction and motivation for present and future study. While the coverage does not include an exhaustive compilation of results, the reader will be armed with an understanding of infinite products within the course of more advanced studies, and, inspired by the sheer beauty of the mathematics. The book will serve as a reference for students of mathematics, physics and engineering, at the level of senior undergraduate or beginning graduate level, who want to know more about infinite products. It will also be of interest to instructors who teach courses that involve infinite products as well as mathematicians who wish to dive deeper into the subject. One could certainly design a special-topics class based on this book for undergraduates. The exercises give the reader a good opportunity to test their understanding of each section.
A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions
Author: Jean-Luc Marichal
Publisher: Springer Nature
ISBN: 3030950883
Category : Mathematics
Languages : en
Pages : 325
Book Description
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.
Publisher: Springer Nature
ISBN: 3030950883
Category : Mathematics
Languages : en
Pages : 325
Book Description
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.