Author: Michael C. Berg
Publisher: John Wiley & Sons
ISBN: 1118031199
Category : Mathematics
Languages : en
Pages : 118
Book Description
A unique synthesis of the three existing Fourier-analytictreatments of quadratic reciprocity. The relative quadratic case was first settled by Hecke in 1923,then recast by Weil in 1964 into the language of unitary grouprepresentations. The analytic proof of the general n-th order caseis still an open problem today, going back to the end of Hecke'sfamous treatise of 1923. The Fourier-Analytic Proof of QuadraticReciprocity provides number theorists interested in analyticmethods applied to reciprocity laws with a unique opportunity toexplore the works of Hecke, Weil, and Kubota. This work brings together for the first time in a single volume thethree existing formulations of the Fourier-analytic proof ofquadratic reciprocity. It shows how Weil's groundbreakingrepresentation-theoretic treatment is in fact equivalent to Hecke'sclassical approach, then goes a step further, presenting Kubota'salgebraic reformulation of the Hecke-Weil proof. Extensivecommutative diagrams for comparing the Weil and Kubotaarchitectures are also featured. The author clearly demonstrates the value of the analytic approach,incorporating some of the most powerful tools of modern numbertheory, including adèles, metaplectric groups, andrepresentations. Finally, he points out that the critical commonfactor among the three proofs is Poisson summation, whosegeneralization may ultimately provide the resolution for Hecke'sopen problem.
The Fourier-Analytic Proof of Quadratic Reciprocity
Author: Michael C. Berg
Publisher: John Wiley & Sons
ISBN: 1118031199
Category : Mathematics
Languages : en
Pages : 118
Book Description
A unique synthesis of the three existing Fourier-analytictreatments of quadratic reciprocity. The relative quadratic case was first settled by Hecke in 1923,then recast by Weil in 1964 into the language of unitary grouprepresentations. The analytic proof of the general n-th order caseis still an open problem today, going back to the end of Hecke'sfamous treatise of 1923. The Fourier-Analytic Proof of QuadraticReciprocity provides number theorists interested in analyticmethods applied to reciprocity laws with a unique opportunity toexplore the works of Hecke, Weil, and Kubota. This work brings together for the first time in a single volume thethree existing formulations of the Fourier-analytic proof ofquadratic reciprocity. It shows how Weil's groundbreakingrepresentation-theoretic treatment is in fact equivalent to Hecke'sclassical approach, then goes a step further, presenting Kubota'salgebraic reformulation of the Hecke-Weil proof. Extensivecommutative diagrams for comparing the Weil and Kubotaarchitectures are also featured. The author clearly demonstrates the value of the analytic approach,incorporating some of the most powerful tools of modern numbertheory, including adèles, metaplectric groups, andrepresentations. Finally, he points out that the critical commonfactor among the three proofs is Poisson summation, whosegeneralization may ultimately provide the resolution for Hecke'sopen problem.
Publisher: John Wiley & Sons
ISBN: 1118031199
Category : Mathematics
Languages : en
Pages : 118
Book Description
A unique synthesis of the three existing Fourier-analytictreatments of quadratic reciprocity. The relative quadratic case was first settled by Hecke in 1923,then recast by Weil in 1964 into the language of unitary grouprepresentations. The analytic proof of the general n-th order caseis still an open problem today, going back to the end of Hecke'sfamous treatise of 1923. The Fourier-Analytic Proof of QuadraticReciprocity provides number theorists interested in analyticmethods applied to reciprocity laws with a unique opportunity toexplore the works of Hecke, Weil, and Kubota. This work brings together for the first time in a single volume thethree existing formulations of the Fourier-analytic proof ofquadratic reciprocity. It shows how Weil's groundbreakingrepresentation-theoretic treatment is in fact equivalent to Hecke'sclassical approach, then goes a step further, presenting Kubota'salgebraic reformulation of the Hecke-Weil proof. Extensivecommutative diagrams for comparing the Weil and Kubotaarchitectures are also featured. The author clearly demonstrates the value of the analytic approach,incorporating some of the most powerful tools of modern numbertheory, including adèles, metaplectric groups, andrepresentations. Finally, he points out that the critical commonfactor among the three proofs is Poisson summation, whosegeneralization may ultimately provide the resolution for Hecke'sopen problem.
Unusual Applications of Number Theory
Author: Melvyn Bernard Nathanson
Publisher: American Mathematical Soc.
ISBN: 0821827030
Category : Mathematics
Languages : en
Pages : 274
Book Description
This volume contains the proceedings of the workshop held at the DIMACS Center of Rutgers University (Piscataway, NJ) on Unusual Applications of Number Theory. Standard applications of number theory are to computer science and cryptology. In this volume, well-known number theorist, Melvyn B. Nathanson, gathers articles from the workshop on other, less standard applications in number theory, as well as topics in number theory with potential applications in science and engineering. The material is suitable for graduate students and researchers interested in number theory and its applications.
Publisher: American Mathematical Soc.
ISBN: 0821827030
Category : Mathematics
Languages : en
Pages : 274
Book Description
This volume contains the proceedings of the workshop held at the DIMACS Center of Rutgers University (Piscataway, NJ) on Unusual Applications of Number Theory. Standard applications of number theory are to computer science and cryptology. In this volume, well-known number theorist, Melvyn B. Nathanson, gathers articles from the workshop on other, less standard applications in number theory, as well as topics in number theory with potential applications in science and engineering. The material is suitable for graduate students and researchers interested in number theory and its applications.
Fourier Analysis
Author: Eric Stade
Publisher: John Wiley & Sons
ISBN: 0471669849
Category : Mathematics
Languages : en
Pages : 522
Book Description
A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of applications of Fourier analysis in the natural sciences and the enormous impact Fourier analysis has had on the development of mathematics as a whole. Systematic and comprehensive, the book: Presents material using a cause-and-effect approach, illustrating where ideas originated and what necessitated them Includes material on wavelets, Lebesgue integration, L2 spaces, and related concepts Conveys information in a lucid, readable style, inspiring further reading and research on the subject Provides exercises at the end of each section, as well as illustrations and worked examples throughout the text Based upon the principle that theory and practice are fundamentally linked, Fourier Analysis is the ideal text and reference for students in mathematics, engineering, and physics, as well as scientists and technicians in a broad range of disciplines who use Fourier analysis in real-world situations.
Publisher: John Wiley & Sons
ISBN: 0471669849
Category : Mathematics
Languages : en
Pages : 522
Book Description
A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of applications of Fourier analysis in the natural sciences and the enormous impact Fourier analysis has had on the development of mathematics as a whole. Systematic and comprehensive, the book: Presents material using a cause-and-effect approach, illustrating where ideas originated and what necessitated them Includes material on wavelets, Lebesgue integration, L2 spaces, and related concepts Conveys information in a lucid, readable style, inspiring further reading and research on the subject Provides exercises at the end of each section, as well as illustrations and worked examples throughout the text Based upon the principle that theory and practice are fundamentally linked, Fourier Analysis is the ideal text and reference for students in mathematics, engineering, and physics, as well as scientists and technicians in a broad range of disciplines who use Fourier analysis in real-world situations.
Functional Analysis
Author: Terry J. Morrison
Publisher: John Wiley & Sons
ISBN: 1118031245
Category : Mathematics
Languages : en
Pages : 380
Book Description
A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader's mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material.
Publisher: John Wiley & Sons
ISBN: 1118031245
Category : Mathematics
Languages : en
Pages : 380
Book Description
A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader's mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material.
A Posteriori Error Estimation in Finite Element Analysis
Author: Mark Ainsworth
Publisher: John Wiley & Sons
ISBN: 9780471294115
Category : Mathematics
Languages : en
Pages : 266
Book Description
An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.
Publisher: John Wiley & Sons
ISBN: 9780471294115
Category : Mathematics
Languages : en
Pages : 266
Book Description
An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.
A Course in Analytic Number Theory
Author: Marius Overholt
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Functional Analysis
Author: Peter D. Lax
Publisher: John Wiley & Sons
ISBN: 0471556041
Category : Mathematics
Languages : en
Pages : 608
Book Description
Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. Includes an appendix on the Riesz representation theorem.
Publisher: John Wiley & Sons
ISBN: 0471556041
Category : Mathematics
Languages : en
Pages : 608
Book Description
Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. Includes an appendix on the Riesz representation theorem.
The Story of Algebraic Numbers in the First Half of the 20th Century
Author: Władysław Narkiewicz
Publisher: Springer
ISBN: 3030037541
Category : Mathematics
Languages : en
Pages : 448
Book Description
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
Publisher: Springer
ISBN: 3030037541
Category : Mathematics
Languages : en
Pages : 448
Book Description
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
Real Analysis
Author: Mark Bridger
Publisher: John Wiley & Sons
ISBN: 1118367715
Category : Mathematics
Languages : en
Pages : 264
Book Description
A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.
Publisher: John Wiley & Sons
ISBN: 1118367715
Category : Mathematics
Languages : en
Pages : 264
Book Description
A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.
Real Analysis
Author: Saul Stahl
Publisher: John Wiley & Sons
ISBN: 1118096851
Category : Mathematics
Languages : en
Pages : 316
Book Description
A provocative look at the tools and history of real analysis This new edition of Real Analysis: A Historical Approach continues to serve as an interesting read for students of analysis. Combining historical coverage with a superb introductory treatment, this book helps readers easily make the transition from concrete to abstract ideas. The book begins with an exciting sampling of classic and famous problems first posed by some of the greatest mathematicians of all time. Archimedes, Fermat, Newton, and Euler are each summoned in turn, illuminating the utility of infinite, power, and trigonometric series in both pure and applied mathematics. Next, Dr. Stahl develops the basic tools of advanced calculus, which introduce the various aspects of the completeness of the real number system as well as sequential continuity and differentiability and lead to the Intermediate and Mean Value Theorems. The Second Edition features: A chapter on the Riemann integral, including the subject of uniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint of sequences over that of series Throughout the book, numerous applications and examples reinforce concepts and demonstrate the validity of historical methods and results, while appended excerpts from original historical works shed light on the concerns of influential mathematicians in addition to the difficulties encountered in their work. Each chapter concludes with exercises ranging in level of complexity, and partial solutions are provided at the end of the book. Real Analysis: A Historical Approach, Second Edition is an ideal book for courses on real analysis and mathematical analysis at the undergraduate level. The book is also a valuable resource for secondary mathematics teachers and mathematicians.
Publisher: John Wiley & Sons
ISBN: 1118096851
Category : Mathematics
Languages : en
Pages : 316
Book Description
A provocative look at the tools and history of real analysis This new edition of Real Analysis: A Historical Approach continues to serve as an interesting read for students of analysis. Combining historical coverage with a superb introductory treatment, this book helps readers easily make the transition from concrete to abstract ideas. The book begins with an exciting sampling of classic and famous problems first posed by some of the greatest mathematicians of all time. Archimedes, Fermat, Newton, and Euler are each summoned in turn, illuminating the utility of infinite, power, and trigonometric series in both pure and applied mathematics. Next, Dr. Stahl develops the basic tools of advanced calculus, which introduce the various aspects of the completeness of the real number system as well as sequential continuity and differentiability and lead to the Intermediate and Mean Value Theorems. The Second Edition features: A chapter on the Riemann integral, including the subject of uniform continuity Explicit coverage of the epsilon-delta convergence A discussion of the modern preference for the viewpoint of sequences over that of series Throughout the book, numerous applications and examples reinforce concepts and demonstrate the validity of historical methods and results, while appended excerpts from original historical works shed light on the concerns of influential mathematicians in addition to the difficulties encountered in their work. Each chapter concludes with exercises ranging in level of complexity, and partial solutions are provided at the end of the book. Real Analysis: A Historical Approach, Second Edition is an ideal book for courses on real analysis and mathematical analysis at the undergraduate level. The book is also a valuable resource for secondary mathematics teachers and mathematicians.