Author: S. Sarkar
Publisher: Springer Science & Business Media
ISBN: 9401128561
Category : Science
Languages : en
Pages : 322
Book Description
genetics. " It is simply the appropriation of that term, very likely with insufficient knowledge and respect for its past usage. For that, the Editor alone is responsible and requests tolerance. He has, as far as he can tell, no intention or desire to use it for any historiographical purposes other than that just mentioned. Even more important, the decision to consider Muller together with Fisher, Haldane and Wright is also not original. Crow (1984) has already done so, arguing persua sively that Muller was "keenly interested in evolution and made sub stantial contributions to the development of the neo-Darwinian view. " Crow's reasons for considering these four figures together and the reasons discussed above are complementary. This book continues a historiographical choice he initiated; others will have to judge whether it is appropriate. The foregoing considerations were intended to show why Fisher, Haldane, Muller and Wright should be considered together in the history of theoretical evolutionary genetics. I By a welcome stroke of luck, from the point of view of the Editor, all four of these figures were born almost together, between 1889 and 1892, and almost exactly a century ago. It therefore seemed appropriate to use their birth cente naries to consider their work together. A conference was held at Boston University, on March 6, 1990, under the auspices of the Boston Center for the Philosophy and History of Science, to discuss their work. This book has emerged mainly from that conference.
The Founders of Evolutionary Genetics
Author: S. Sarkar
Publisher: Springer Science & Business Media
ISBN: 9401128561
Category : Science
Languages : en
Pages : 322
Book Description
genetics. " It is simply the appropriation of that term, very likely with insufficient knowledge and respect for its past usage. For that, the Editor alone is responsible and requests tolerance. He has, as far as he can tell, no intention or desire to use it for any historiographical purposes other than that just mentioned. Even more important, the decision to consider Muller together with Fisher, Haldane and Wright is also not original. Crow (1984) has already done so, arguing persua sively that Muller was "keenly interested in evolution and made sub stantial contributions to the development of the neo-Darwinian view. " Crow's reasons for considering these four figures together and the reasons discussed above are complementary. This book continues a historiographical choice he initiated; others will have to judge whether it is appropriate. The foregoing considerations were intended to show why Fisher, Haldane, Muller and Wright should be considered together in the history of theoretical evolutionary genetics. I By a welcome stroke of luck, from the point of view of the Editor, all four of these figures were born almost together, between 1889 and 1892, and almost exactly a century ago. It therefore seemed appropriate to use their birth cente naries to consider their work together. A conference was held at Boston University, on March 6, 1990, under the auspices of the Boston Center for the Philosophy and History of Science, to discuss their work. This book has emerged mainly from that conference.
Publisher: Springer Science & Business Media
ISBN: 9401128561
Category : Science
Languages : en
Pages : 322
Book Description
genetics. " It is simply the appropriation of that term, very likely with insufficient knowledge and respect for its past usage. For that, the Editor alone is responsible and requests tolerance. He has, as far as he can tell, no intention or desire to use it for any historiographical purposes other than that just mentioned. Even more important, the decision to consider Muller together with Fisher, Haldane and Wright is also not original. Crow (1984) has already done so, arguing persua sively that Muller was "keenly interested in evolution and made sub stantial contributions to the development of the neo-Darwinian view. " Crow's reasons for considering these four figures together and the reasons discussed above are complementary. This book continues a historiographical choice he initiated; others will have to judge whether it is appropriate. The foregoing considerations were intended to show why Fisher, Haldane, Muller and Wright should be considered together in the history of theoretical evolutionary genetics. I By a welcome stroke of luck, from the point of view of the Editor, all four of these figures were born almost together, between 1889 and 1892, and almost exactly a century ago. It therefore seemed appropriate to use their birth cente naries to consider their work together. A conference was held at Boston University, on March 6, 1990, under the auspices of the Boston Center for the Philosophy and History of Science, to discuss their work. This book has emerged mainly from that conference.
Elements of Evolutionary Genetics
Author: Brian Charlesworth
Publisher: Roberts
ISBN:
Category : Science
Languages : en
Pages : 776
Book Description
This textbook shows readers how models of the genetic processes involved in evolution are made (including natural selection, migration, mutation, and genetic drift in finite populations), and how the models are used to interpret classical and molecular genetic data. The material is intended for advanced level undergraduate courses in genetics and evolutionary biology, graduate students in evolutionary biology and human genetics, and researchers in related fields who wish to learn evolutionary genetics. The topics covered include genetic variation, DNA sequence variability and its measurement, the different types of natural selection and their effects (e.g. the maintenance of variation, directional selection, and adaptation), the interactions between selection and mutation or migration, the description and analysis of variation at multiple sites in the genome, genetic drift, and the effects of spatial structure.
Publisher: Roberts
ISBN:
Category : Science
Languages : en
Pages : 776
Book Description
This textbook shows readers how models of the genetic processes involved in evolution are made (including natural selection, migration, mutation, and genetic drift in finite populations), and how the models are used to interpret classical and molecular genetic data. The material is intended for advanced level undergraduate courses in genetics and evolutionary biology, graduate students in evolutionary biology and human genetics, and researchers in related fields who wish to learn evolutionary genetics. The topics covered include genetic variation, DNA sequence variability and its measurement, the different types of natural selection and their effects (e.g. the maintenance of variation, directional selection, and adaptation), the interactions between selection and mutation or migration, the description and analysis of variation at multiple sites in the genome, genetic drift, and the effects of spatial structure.
Human Evolutionary Genetics
Author: Mark Jobling
Publisher: Garland Science
ISBN: 1317952251
Category : Science
Languages : en
Pages : 1538
Book Description
Human Evolutionary Genetics is a groundbreaking text which for the first time brings together molecular genetics and genomics to the study of the origins and movements of human populations. Starting with an overview of molecular genomics for the non-specialist (which can be a useful review for those with a more genetic background), the book shows h
Publisher: Garland Science
ISBN: 1317952251
Category : Science
Languages : en
Pages : 1538
Book Description
Human Evolutionary Genetics is a groundbreaking text which for the first time brings together molecular genetics and genomics to the study of the origins and movements of human populations. Starting with an overview of molecular genomics for the non-specialist (which can be a useful review for those with a more genetic background), the book shows h
Evolutionary Genetics
Author: Glenn-Peter Sætre
Publisher:
ISBN: 0198830912
Category : Mathematics
Languages : en
Pages : 327
Book Description
With recent technological advances, vast quantities of genetic and genomic data are being generated at an ever-increasing pace. The explosion in access to data has transformed the field of evolutionary genetics. A thorough understanding of evolutionary principles is essential for making sense of this, but new skill sets are also needed to handle and analyze big data. This contemporary textbook covers all the major components of modern evolutionary genetics, carefully explaining fundamental processes such as mutation, natural selection, genetic drift, and speciation. It also draws on a rich literature of exciting and inspiring examples to demonstrate the diversity of evolutionary research, including an emphasis on how evolution and selection has shaped our own species. Practical experience is essential for developing an understanding of how to use genetic and genomic data to analyze and interpret results in meaningful ways. In addition to the main text, a series of online tutorials using the R language serves as an introduction to programming, statistics, and analysis. Indeed the R environment stands out as an ideal all-purpose source platform to handle and analyze such data. The book and its online materials take full advantage of the authors' own experience in working in a post-genomic revolution world, and introduces readers to the plethora of molecular and analytical methods that have only recently become available. Evolutionary Genetics is an advanced but accessible textbook aimed principally at students of various levels (from undergraduate to postgraduate) but also for researchers looking for an updated introduction to modern evolutionary biology and genetics.
Publisher:
ISBN: 0198830912
Category : Mathematics
Languages : en
Pages : 327
Book Description
With recent technological advances, vast quantities of genetic and genomic data are being generated at an ever-increasing pace. The explosion in access to data has transformed the field of evolutionary genetics. A thorough understanding of evolutionary principles is essential for making sense of this, but new skill sets are also needed to handle and analyze big data. This contemporary textbook covers all the major components of modern evolutionary genetics, carefully explaining fundamental processes such as mutation, natural selection, genetic drift, and speciation. It also draws on a rich literature of exciting and inspiring examples to demonstrate the diversity of evolutionary research, including an emphasis on how evolution and selection has shaped our own species. Practical experience is essential for developing an understanding of how to use genetic and genomic data to analyze and interpret results in meaningful ways. In addition to the main text, a series of online tutorials using the R language serves as an introduction to programming, statistics, and analysis. Indeed the R environment stands out as an ideal all-purpose source platform to handle and analyze such data. The book and its online materials take full advantage of the authors' own experience in working in a post-genomic revolution world, and introduces readers to the plethora of molecular and analytical methods that have only recently become available. Evolutionary Genetics is an advanced but accessible textbook aimed principally at students of various levels (from undergraduate to postgraduate) but also for researchers looking for an updated introduction to modern evolutionary biology and genetics.
Conceptual Breakthroughs in Evolutionary Genetics
Author: John C. Avise
Publisher: Academic Press
ISBN: 0124202373
Category : Science
Languages : en
Pages : 185
Book Description
Conceptual Breakthroughs in Evolutionary Genetics is a pithy, lively book occupying a special niche—the conceptual history of evolutionary genetics— not inhabited by any other available treatment. Written by a world-leading authority in evolutionary genetics, this work encapsulates and ranks 70 of the most significant paradigm shifts in evolutionary biology and genetics during the century-and-a-half since Darwin and Mendel. The science of evolutionary genetics is central to all of biology, but many students and other practitioners have little knowledge of its historical roots and conceptual developments. This book fills that knowledge gap in a thought-provoking and readable format. This fascinating chronological journey along the many conceptual pathways to our modern understanding of evolutionary and genetic principles is a wonderful springboard for discussions in undergraduate or graduate seminars in evolutionary biology and genetics. But more than that, anyone interested in the history and philosophy of science will find much of value between its covers. - Provides a relative ranking of 70 seminal breakthroughs and paradigm shifts in the field of evolutionary biology and genetics - Modular format permits ready access to each described subject - Historical overview of a field whose concepts are central to all of biology and relevant to a broad audience of biologists, science historians, and philosophers of science - Extensively cross-referenced with a guide to landmark papers and books for each topic
Publisher: Academic Press
ISBN: 0124202373
Category : Science
Languages : en
Pages : 185
Book Description
Conceptual Breakthroughs in Evolutionary Genetics is a pithy, lively book occupying a special niche—the conceptual history of evolutionary genetics— not inhabited by any other available treatment. Written by a world-leading authority in evolutionary genetics, this work encapsulates and ranks 70 of the most significant paradigm shifts in evolutionary biology and genetics during the century-and-a-half since Darwin and Mendel. The science of evolutionary genetics is central to all of biology, but many students and other practitioners have little knowledge of its historical roots and conceptual developments. This book fills that knowledge gap in a thought-provoking and readable format. This fascinating chronological journey along the many conceptual pathways to our modern understanding of evolutionary and genetic principles is a wonderful springboard for discussions in undergraduate or graduate seminars in evolutionary biology and genetics. But more than that, anyone interested in the history and philosophy of science will find much of value between its covers. - Provides a relative ranking of 70 seminal breakthroughs and paradigm shifts in the field of evolutionary biology and genetics - Modular format permits ready access to each described subject - Historical overview of a field whose concepts are central to all of biology and relevant to a broad audience of biologists, science historians, and philosophers of science - Extensively cross-referenced with a guide to landmark papers and books for each topic
The Origins of Theoretical Population Genetics
Author: William B. Provine
Publisher: University of Chicago Press
ISBN: 022678892X
Category : Science
Languages : en
Pages : 224
Book Description
Tracing the development of population genetics through the writings of such luminaries as Darwin, Galton, Pearson, Fisher, Haldane, and Wright, William B. Provine sheds light on this complex field as well as its bearing on other branches of biology.
Publisher: University of Chicago Press
ISBN: 022678892X
Category : Science
Languages : en
Pages : 224
Book Description
Tracing the development of population genetics through the writings of such luminaries as Darwin, Galton, Pearson, Fisher, Haldane, and Wright, William B. Provine sheds light on this complex field as well as its bearing on other branches of biology.
Molecular Evolutionary Genetics
Author: Masatoshi Nei
Publisher: Columbia University Press
ISBN: 9780231063210
Category : Computers
Languages : en
Pages : 526
Book Description
-- "The Scientist"
Publisher: Columbia University Press
ISBN: 9780231063210
Category : Computers
Languages : en
Pages : 526
Book Description
-- "The Scientist"
Evolution in Four Dimensions, revised edition
Author: Eva Jablonka
Publisher: MIT Press
ISBN: 0262525844
Category : Science
Languages : en
Pages : 577
Book Description
A pioneering proposal for a pluralistic extension of evolutionary theory, now updated to reflect the most recent research. This new edition of the widely read Evolution in Four Dimensions has been revised to reflect the spate of new discoveries in biology since the book was first published in 2005, offering corrections, an updated bibliography, and a substantial new chapter. Eva Jablonka and Marion Lamb's pioneering argument proposes that there is more to heredity than genes. They describe four “dimensions” in heredity—four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and other forms of symbolic communication). These systems, they argue, can all provide variations on which natural selection can act. Jablonka and Lamb present a richer, more complex view of evolution than that offered by the gene-based Modern Synthesis, arguing that induced and acquired changes also play a role. Their lucid and accessible text is accompanied by artist-physician Anna Zeligowski's lively drawings, which humorously and effectively illustrate the authors' points. Each chapter ends with a dialogue in which the authors refine their arguments against the vigorous skepticism of the fictional “I.M.” (for Ipcha Mistabra—Aramaic for “the opposite conjecture”). The extensive new chapter, presented engagingly as a dialogue with I.M., updates the information on each of the four dimensions—with special attention to the epigenetic, where there has been an explosion of new research. Praise for the first edition “With courage and verve, and in a style accessible to general readers, Jablonka and Lamb lay out some of the exciting new pathways of Darwinian evolution that have been uncovered by contemporary research.” —Evelyn Fox Keller, MIT, author of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines “In their beautifully written and impressively argued new book, Jablonka and Lamb show that the evidence from more than fifty years of molecular, behavioral and linguistic studies forces us to reevaluate our inherited understanding of evolution.” —Oren Harman, The New Republic “It is not only an enjoyable read, replete with ideas and facts of interest but it does the most valuable thing a book can do—it makes you think and reexamine your premises and long-held conclusions.” —Adam Wilkins, BioEssays
Publisher: MIT Press
ISBN: 0262525844
Category : Science
Languages : en
Pages : 577
Book Description
A pioneering proposal for a pluralistic extension of evolutionary theory, now updated to reflect the most recent research. This new edition of the widely read Evolution in Four Dimensions has been revised to reflect the spate of new discoveries in biology since the book was first published in 2005, offering corrections, an updated bibliography, and a substantial new chapter. Eva Jablonka and Marion Lamb's pioneering argument proposes that there is more to heredity than genes. They describe four “dimensions” in heredity—four inheritance systems that play a role in evolution: genetic, epigenetic (or non-DNA cellular transmission of traits), behavioral, and symbolic (transmission through language and other forms of symbolic communication). These systems, they argue, can all provide variations on which natural selection can act. Jablonka and Lamb present a richer, more complex view of evolution than that offered by the gene-based Modern Synthesis, arguing that induced and acquired changes also play a role. Their lucid and accessible text is accompanied by artist-physician Anna Zeligowski's lively drawings, which humorously and effectively illustrate the authors' points. Each chapter ends with a dialogue in which the authors refine their arguments against the vigorous skepticism of the fictional “I.M.” (for Ipcha Mistabra—Aramaic for “the opposite conjecture”). The extensive new chapter, presented engagingly as a dialogue with I.M., updates the information on each of the four dimensions—with special attention to the epigenetic, where there has been an explosion of new research. Praise for the first edition “With courage and verve, and in a style accessible to general readers, Jablonka and Lamb lay out some of the exciting new pathways of Darwinian evolution that have been uncovered by contemporary research.” —Evelyn Fox Keller, MIT, author of Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines “In their beautifully written and impressively argued new book, Jablonka and Lamb show that the evidence from more than fifty years of molecular, behavioral and linguistic studies forces us to reevaluate our inherited understanding of evolution.” —Oren Harman, The New Republic “It is not only an enjoyable read, replete with ideas and facts of interest but it does the most valuable thing a book can do—it makes you think and reexamine your premises and long-held conclusions.” —Adam Wilkins, BioEssays
Population and Evolutionary Genetics
Author: Francisco José Ayala
Publisher: Benjamin-Cummings Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 298
Book Description
Publisher: Benjamin-Cummings Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 298
Book Description
Evolutionary Quantitative Genetics
Author: Derek A. Roff
Publisher: Springer Science & Business Media
ISBN: 1461540801
Category : Science
Languages : en
Pages : 503
Book Description
The impetus for this book arose out of my previous book, The Evolution of Life Histories (Roff, 1992). In that book I presented a single chapter on quanti tative genetic theory. However, as the book was concerned with the evolution of life histories and traits connected to this, the presence of quantitative genetic variation was an underlying theme throughout. Much of the focus was placed on optimality theory, for it is this approach that has proven to be extremely successful in the analysis of life history variation. But quantitative genetics cannot be ig nored, because there are some questions for which optimality approaches are inappropriate; for example, although optimality modeling can address the ques tion of the maintenance of phenotypic variation, it cannot say anything about genetic variation, on which further evolution clearly depends. The present book is, thus, a natural extension of the first. I have approached the problem not from the point of view of an animal or plant breeder but from that of one interested in understanding the evolution of quantitative traits in wild populations. The subject is large with a considerable body of theory: I generally present the assumptions underlying the analysis and the results, giving the relevant references for those interested in the intervening mathematics. My interest is in what quantitative genetics tells me about evolutionary processes; therefore, I have concentrated on areas of research most relevant to field studies.
Publisher: Springer Science & Business Media
ISBN: 1461540801
Category : Science
Languages : en
Pages : 503
Book Description
The impetus for this book arose out of my previous book, The Evolution of Life Histories (Roff, 1992). In that book I presented a single chapter on quanti tative genetic theory. However, as the book was concerned with the evolution of life histories and traits connected to this, the presence of quantitative genetic variation was an underlying theme throughout. Much of the focus was placed on optimality theory, for it is this approach that has proven to be extremely successful in the analysis of life history variation. But quantitative genetics cannot be ig nored, because there are some questions for which optimality approaches are inappropriate; for example, although optimality modeling can address the ques tion of the maintenance of phenotypic variation, it cannot say anything about genetic variation, on which further evolution clearly depends. The present book is, thus, a natural extension of the first. I have approached the problem not from the point of view of an animal or plant breeder but from that of one interested in understanding the evolution of quantitative traits in wild populations. The subject is large with a considerable body of theory: I generally present the assumptions underlying the analysis and the results, giving the relevant references for those interested in the intervening mathematics. My interest is in what quantitative genetics tells me about evolutionary processes; therefore, I have concentrated on areas of research most relevant to field studies.