Author: Kenneth Kunen
Publisher:
ISBN: 9781904987147
Category : Mathematics
Languages : en
Pages : 251
Book Description
Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.
The Foundations of Mathematics
Foundations of Mathematics and other Logical Essays
Author: Frank Plumpton Ramsey
Publisher: Routledge
ISBN: 1134528035
Category : Philosophy
Languages : en
Pages : 311
Book Description
This is Volume V in a series of eight on the Philosophy of Logic and Mathematics. Originally published in 1931, this study offers a collection of logical essays around the topic of the foundations of mathematics. Though mathematical teaching was Ramsey's profession, philosophy was his vocation. Reared on the logic of Principia Mathematica, he was early to see the importance of Dr. Wittgenstein's work (in the translation of which he assisted); and his own published papers were largely based on this. But the previously unprinted essays and notes collected in this volume show him moving towards a kind of pragmatism, and the general treatise on logic upon which at various times he had been engaged was to have treated truth and knowledge as purely natural phenomena to be explained psychologically without recourse to distinctively logical relations.
Publisher: Routledge
ISBN: 1134528035
Category : Philosophy
Languages : en
Pages : 311
Book Description
This is Volume V in a series of eight on the Philosophy of Logic and Mathematics. Originally published in 1931, this study offers a collection of logical essays around the topic of the foundations of mathematics. Though mathematical teaching was Ramsey's profession, philosophy was his vocation. Reared on the logic of Principia Mathematica, he was early to see the importance of Dr. Wittgenstein's work (in the translation of which he assisted); and his own published papers were largely based on this. But the previously unprinted essays and notes collected in this volume show him moving towards a kind of pragmatism, and the general treatise on logic upon which at various times he had been engaged was to have treated truth and knowledge as purely natural phenomena to be explained psychologically without recourse to distinctively logical relations.
Conceptions of Set and the Foundations of Mathematics
Author: Luca Incurvati
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Introduction to the Foundations of Mathematics
Author: Raymond L. Wilder
Publisher: Courier Corporation
ISBN: 0486276201
Category : Mathematics
Languages : en
Pages : 354
Book Description
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
Publisher: Courier Corporation
ISBN: 0486276201
Category : Mathematics
Languages : en
Pages : 354
Book Description
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
Wittgenstein on the Foundations of Mathematics
Author: Crispin Wright
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 512
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 512
Book Description
Foundations of Constructive Mathematics
Author: M.J. Beeson
Publisher: Springer Science & Business Media
ISBN: 3642689523
Category : Mathematics
Languages : en
Pages : 484
Book Description
This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.
Publisher: Springer Science & Business Media
ISBN: 3642689523
Category : Mathematics
Languages : en
Pages : 484
Book Description
This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.
The Foundations of Mathematics
Author: Ian Stewart
Publisher: Oxford University Press, USA
ISBN: 019870643X
Category : Mathematics
Languages : en
Pages : 409
Book Description
The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of formal ideas. This second edition takes a significant step forward by not only making the transition from intuitive to formal methods, but also by reversing the process- using structure theorems to prove that formal systems have visual and symbolic interpretations that enhance mathematical thinking. This is exemplified by a new chapter on the theory of groups. While the first edition extended counting to infinite cardinal numbers, the second also extends the real numbers rigorously to larger ordered fields. This links intuitive ideas in calculus to the formal epsilon-delta methods of analysis. The approach here is not the conventional one of 'nonstandard analysis', but a simpler, graphically based treatment which makes the notion of an infinitesimal natural and straightforward. This allows a further vision of the wider world of mathematical thinking in which formal definitions and proof lead to amazing new ways of defining, proving, visualising and symbolising mathematics beyond previous expectations.
Publisher: Oxford University Press, USA
ISBN: 019870643X
Category : Mathematics
Languages : en
Pages : 409
Book Description
The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of formal ideas. This second edition takes a significant step forward by not only making the transition from intuitive to formal methods, but also by reversing the process- using structure theorems to prove that formal systems have visual and symbolic interpretations that enhance mathematical thinking. This is exemplified by a new chapter on the theory of groups. While the first edition extended counting to infinite cardinal numbers, the second also extends the real numbers rigorously to larger ordered fields. This links intuitive ideas in calculus to the formal epsilon-delta methods of analysis. The approach here is not the conventional one of 'nonstandard analysis', but a simpler, graphically based treatment which makes the notion of an infinitesimal natural and straightforward. This allows a further vision of the wider world of mathematical thinking in which formal definitions and proof lead to amazing new ways of defining, proving, visualising and symbolising mathematics beyond previous expectations.
Mathematical Logic and the Foundations of Mathematics
Author: G. T. Kneebone
Publisher: Dover Publications
ISBN: 9780486417127
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
Ideal for students intending to specialize in the topic. Part I discusses traditional and symbolic logic. Part II explores the foundations of mathematics. Part III focuses on the philosophy of mathematics.
Publisher: Dover Publications
ISBN: 9780486417127
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
Ideal for students intending to specialize in the topic. Part I discusses traditional and symbolic logic. Part II explores the foundations of mathematics. Part III focuses on the philosophy of mathematics.
Homotopy Type Theory: Univalent Foundations of Mathematics
Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484
Book Description
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484
Book Description
Reflections on the Foundations of Mathematics
Author: Stefania Centrone
Publisher: Springer Nature
ISBN: 3030156559
Category : Mathematics
Languages : en
Pages : 511
Book Description
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.
Publisher: Springer Nature
ISBN: 3030156559
Category : Mathematics
Languages : en
Pages : 511
Book Description
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.