The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1139867695
Category : Science
Languages : en
Pages : 387

Get Book Here

Book Description
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1139867695
Category : Science
Languages : en
Pages : 387

Get Book Here

Book Description
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

The Finite-Difference Modelling of Earthquake Motions

The Finite-Difference Modelling of Earthquake Motions PDF Author: Peter Moczo
Publisher: Cambridge University Press
ISBN: 1107028817
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
A systematic tutorial introduction to the finite-difference (FD) numerical modelling technique for professionals, academic researchers, and graduate students in seismology.

Computational Seismology

Computational Seismology PDF Author: Heiner Igel
Publisher: Oxford University Press
ISBN: 0198717407
Category : Nature
Languages : en
Pages : 340

Get Book Here

Book Description
An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.

Introduction to Petroleum Seismology, second edition

Introduction to Petroleum Seismology, second edition PDF Author: Luc T. Ikelle
Publisher: SEG Books
ISBN: 1560803436
Category : Science
Languages : en
Pages : 1403

Get Book Here

Book Description
Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.

Seismology: Surface Waves and Earth Oscillations

Seismology: Surface Waves and Earth Oscillations PDF Author: Bruce Bolt
Publisher: Elsevier
ISBN: 0323155952
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
Methods in Computational Physics, Volume 11: Seismology: Surface Waves and Earth Oscillations is a five-chapter text that deals with the computational analysis of surface waves and the eigenvibrations of the Earth. Chapter 1 describes the advances in the numerical modeling of geological structures where the appropriate partial differential equations with boundary conditions for heterogeneous materials are solved using an intricate finite difference scheme. Chapter 2 presents the computer techniques of processing seismograms to obtain information on the dispersion of seismic surface waves, while Chapter 3 explains the fast algorithms for computation of eigenvalues in surface wave and terrestrial eigenvibration problems. Chapter 4 presents a competing method, much used in structural engineering and soil mechanics. Chapter 5 is devoted to the propagation of surface waves in layered media, which indicate that density and elasticity vary only in the vertical direction. This chapter also provides the fundamentals and numerical aspects of the theory of seismic surface waves. This book is an invaluable source for seismologists, earthquake engineers, and graduate students.

The Finite-difference Method for Seismologists

The Finite-difference Method for Seismologists PDF Author: Peter Moczo
Publisher:
ISBN: 9788022320009
Category : Finite differences
Languages : en
Pages : 150

Get Book Here

Book Description


Full Seismic Waveform Modelling and Inversion

Full Seismic Waveform Modelling and Inversion PDF Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

Measuring, Modeling and Predicting the Seismic Site Effect

Measuring, Modeling and Predicting the Seismic Site Effect PDF Author: Yefei Ren
Publisher: Frontiers Media SA
ISBN: 2832540090
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
As recognized universally by both seismology and earthquake engineering communities, the amplitude and frequency content of ground motions are influenced by local site effects, including the effects of near-surface geologic materials, surface topographic and basin effects, and so on. Strong linkage between seismic site effect and earthquake damage has been commonly demonstrated from many past earthquakes. Therefore, quantitative and reliable evaluation of the seismic site effect is one of the crucial aspects in seismic hazard assessment and risk mitigation. With the significant advancement of modern seismic monitoring networks and arrays, huge amounts of high-quality seismic records are now being accumulated. This encourages us to measure the site responses and its associated uncertainty for selected seismic stations by some record-dependent approaches, such as horizontal-to-vertical spectral ratio (HVSR) measurements, generalized spectral inversion (GIT) methods, etc. Machine learning techniques also show significant promise in characterization of the near-surface geologic properties and prediction of site response. These data-driven approaches help us to better understand the physics of spatial and temporal variabilities of ground motions. Due to more and more site-specific data being captured, invoking non-ergodic assumptions in seismic response analysis has recently been a topic of great interest in the community. For specific site response analysis, numerical simulations are carried out to model the dynamic process of seismic waves propagating and scattering in the subsurface strata. With development of modeling capacity, great efforts have been taken to evaluate quantitatively the complex 2D and 3D effects on seismic site response.

Introduction to Seismology

Introduction to Seismology PDF Author: Peter M. Shearer
Publisher: Cambridge University Press
ISBN: 1316884775
Category : Science
Languages : en
Pages : 443

Get Book Here

Book Description
This third edition provides a concise yet approachable introduction to seismic theory, designed as a first course for graduate students or advanced undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations, and outlines the different types of seismic waves and how they can be used to resolve Earth structure and understand earthquakes. New material and updates have been added throughout, including ambient noise methods, shear-wave splitting, back-projection, migration and velocity analysis in reflection seismology, earthquake rupture directivity, and fault weakening mechanisms. A wealth of both reworked and new examples, review questions and computer-based exercises in MATLABĀ®/Python give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate Earth's seismic properties. More advanced sections, which are not needed to understand the other material, are flagged so that instructors or students pressed for time can skip them.

Numerical Modeling of Seismic Wave Propagation

Numerical Modeling of Seismic Wave Propagation PDF Author: Johan O. A. Robertsson
Publisher: SEG Books
ISBN: 1560802901
Category : Nature
Languages : en
Pages : 115

Get Book Here

Book Description
The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.