Author: Patrick J. Keeling
Publisher:
ISBN: 9781621820284
Category : Science
Languages : en
Pages : 416
Book Description
All protists, fungi, animals, and plants on Earth are eukaryotes. Their cells possess membrane-bound organelles including a nucleus and mitochondria, distinct cytoskeletal features, and a unique chromosome structure that permits them to undergo mitosis or meiosis. The emergence of eukaryotic cells from prokaryotic ancestors about 2 billion years ago was a pivotal evolutionary transition in the history of life on Earth. But the change was abrupt, and few clues exist as to the nature of the intermediate stages. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines evolutionary scenarios that likely led to the emergence and rapid evolution of eukaryotes. Contributors review the mechanisms, timing, and consequences of endosymbiosis, as well as molecular and biochemical characteristics of archaea and bacteria that may have contributed to the first eukaryotic lineage. They explore all of the available evidence, including clues from the fossil record and comparative genomics, and formulate ideas about the origin of genomic characteristics (e.g., chromatin and introns) and specific cellular features (e.g., the endomembrane system) in eukaryotes. Topics such as the origins of multicellularity and sex are also covered. This volume includes discussion of multiple evolutionary models that warrant serious attention, as well as lively debate on some of the most contentious topics in the field. It will thus be fascinating reading for evolutionary biologists, cell and molecular biologists, paleobiologists, and all who are interested in the history of life on Earth.
The Origin and Evolution of Eukaryotes
Author: Patrick J. Keeling
Publisher:
ISBN: 9781621820284
Category : Science
Languages : en
Pages : 416
Book Description
All protists, fungi, animals, and plants on Earth are eukaryotes. Their cells possess membrane-bound organelles including a nucleus and mitochondria, distinct cytoskeletal features, and a unique chromosome structure that permits them to undergo mitosis or meiosis. The emergence of eukaryotic cells from prokaryotic ancestors about 2 billion years ago was a pivotal evolutionary transition in the history of life on Earth. But the change was abrupt, and few clues exist as to the nature of the intermediate stages. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines evolutionary scenarios that likely led to the emergence and rapid evolution of eukaryotes. Contributors review the mechanisms, timing, and consequences of endosymbiosis, as well as molecular and biochemical characteristics of archaea and bacteria that may have contributed to the first eukaryotic lineage. They explore all of the available evidence, including clues from the fossil record and comparative genomics, and formulate ideas about the origin of genomic characteristics (e.g., chromatin and introns) and specific cellular features (e.g., the endomembrane system) in eukaryotes. Topics such as the origins of multicellularity and sex are also covered. This volume includes discussion of multiple evolutionary models that warrant serious attention, as well as lively debate on some of the most contentious topics in the field. It will thus be fascinating reading for evolutionary biologists, cell and molecular biologists, paleobiologists, and all who are interested in the history of life on Earth.
Publisher:
ISBN: 9781621820284
Category : Science
Languages : en
Pages : 416
Book Description
All protists, fungi, animals, and plants on Earth are eukaryotes. Their cells possess membrane-bound organelles including a nucleus and mitochondria, distinct cytoskeletal features, and a unique chromosome structure that permits them to undergo mitosis or meiosis. The emergence of eukaryotic cells from prokaryotic ancestors about 2 billion years ago was a pivotal evolutionary transition in the history of life on Earth. But the change was abrupt, and few clues exist as to the nature of the intermediate stages. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines evolutionary scenarios that likely led to the emergence and rapid evolution of eukaryotes. Contributors review the mechanisms, timing, and consequences of endosymbiosis, as well as molecular and biochemical characteristics of archaea and bacteria that may have contributed to the first eukaryotic lineage. They explore all of the available evidence, including clues from the fossil record and comparative genomics, and formulate ideas about the origin of genomic characteristics (e.g., chromatin and introns) and specific cellular features (e.g., the endomembrane system) in eukaryotes. Topics such as the origins of multicellularity and sex are also covered. This volume includes discussion of multiple evolutionary models that warrant serious attention, as well as lively debate on some of the most contentious topics in the field. It will thus be fascinating reading for evolutionary biologists, cell and molecular biologists, paleobiologists, and all who are interested in the history of life on Earth.
How Molecular Forces and Rotating Planets Create Life
Author: Jan Spitzer
Publisher: MIT Press
ISBN: 0262362597
Category : Science
Languages : en
Pages : 249
Book Description
A reconceptualization of origins research that exploits a modern understanding of non-covalent molecular forces that stabilize living prokaryotic cells. Scientific research into the origins of life remains exploratory and speculative. Science has no definitive answer to the biggest questions--"What is life?" and "How did life begin on earth?" In this book, Jan Spitzer reconceptualizes origins research by exploiting a modern understanding of non-covalent molecular forces and covalent bond formation--a physicochemical approach propounded originally by Linus Pauling and Max Delbrück. Spitzer develops the Pauling-Delbrück premise as a physicochemical jigsaw puzzle that identifies key stages in life's emergence, from the formation of first oceans, tidal sediments, and proto-biofilms to progenotes, proto-cells and the first cellular organisms.
Publisher: MIT Press
ISBN: 0262362597
Category : Science
Languages : en
Pages : 249
Book Description
A reconceptualization of origins research that exploits a modern understanding of non-covalent molecular forces that stabilize living prokaryotic cells. Scientific research into the origins of life remains exploratory and speculative. Science has no definitive answer to the biggest questions--"What is life?" and "How did life begin on earth?" In this book, Jan Spitzer reconceptualizes origins research by exploiting a modern understanding of non-covalent molecular forces and covalent bond formation--a physicochemical approach propounded originally by Linus Pauling and Max Delbrück. Spitzer develops the Pauling-Delbrück premise as a physicochemical jigsaw puzzle that identifies key stages in life's emergence, from the formation of first oceans, tidal sediments, and proto-biofilms to progenotes, proto-cells and the first cellular organisms.
Prokaryotology
Author: Sorin Sonea
Publisher: PUM
ISBN: 2760617564
Category : Reference
Languages : en
Pages : 107
Book Description
Prokaryotes are profoundly original, highly efficient microorganisms that have played a decisive role in the evolution of life on Earth. Although disjunct, taken together their cells form one global superorganism or biological system. One of the results of their non-Darwinian evolution has been the development of enormous diversity and bio-energetic variety. Prokaryotic cells possess standardized mechanisms for easy gene exchanges (lateral gene transfer) and they can behave like receiving and broadcasting stations for genetic material. Ultimately, the result is a global communication system based on the prokaryotic hereditary patrimony, by analogy, a two-billion-year-old world wide web for their benefit. Eukaryotes have evolved from the association of at least three complementary prokaryotic cells, and their subsequent development has been enriched and accelerated by symbioses with other prokaryotes. One of these symbioses was responsible for the origin of vascular plants which transformed vast sections of the continental surface of the Earth from deserts to areas with luxuriant, life-supporting vegetation. All forms of life on our planet are directly or indirectly sustained and enriched by the positive contribution of prokaryotes. Sorin Sonea and L�o G. Mathieu have been professors at the Department of Microbiology and Immunology (Faculty of Medicine) at the Universit� de Montr�al. They have long been advocates of the ideas presented in this book.
Publisher: PUM
ISBN: 2760617564
Category : Reference
Languages : en
Pages : 107
Book Description
Prokaryotes are profoundly original, highly efficient microorganisms that have played a decisive role in the evolution of life on Earth. Although disjunct, taken together their cells form one global superorganism or biological system. One of the results of their non-Darwinian evolution has been the development of enormous diversity and bio-energetic variety. Prokaryotic cells possess standardized mechanisms for easy gene exchanges (lateral gene transfer) and they can behave like receiving and broadcasting stations for genetic material. Ultimately, the result is a global communication system based on the prokaryotic hereditary patrimony, by analogy, a two-billion-year-old world wide web for their benefit. Eukaryotes have evolved from the association of at least three complementary prokaryotic cells, and their subsequent development has been enriched and accelerated by symbioses with other prokaryotes. One of these symbioses was responsible for the origin of vascular plants which transformed vast sections of the continental surface of the Earth from deserts to areas with luxuriant, life-supporting vegetation. All forms of life on our planet are directly or indirectly sustained and enriched by the positive contribution of prokaryotes. Sorin Sonea and L�o G. Mathieu have been professors at the Department of Microbiology and Immunology (Faculty of Medicine) at the Universit� de Montr�al. They have long been advocates of the ideas presented in this book.
Concepts of Biology
Author: Samantha Fowler
Publisher:
ISBN: 9781739015503
Category :
Languages : en
Pages : 0
Book Description
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Publisher:
ISBN: 9781739015503
Category :
Languages : en
Pages : 0
Book Description
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Bioactive Ceramides in Health and Disease
Author: Johnny Stiban
Publisher: Springer Nature
ISBN: 3030211622
Category : Science
Languages : en
Pages : 159
Book Description
This book is about the various roles of bioactive ceramides and other sphingolipids in cellular biology. The enigmatic biophysical and biochemical properties of ceramides and their propensity to influence membranes whether as rafts or protein-permeable channels are heavily discussed. Metabolism of ceramides and their metabolites is also focused with ceramide synthase family of proteins being a target of extensive review. Ceramide 1-phosphate and other sphingolipids are also presented in cellular physiology and pathophysiology. Prokaryotic origins of mitochondria at the level of membranes and the occurrence of apoptosis in bacteria are presented. Many aspects of ceramide and sphingolipid biology are addressed in this book. Its focus is the metabolism of ceramide in normal and diseased states and the biophysical and biochemical mechanisms governing the bioactivity of these molecules. Sphingolipid research has surged over the past thirty years and this book gathers the recent findings of various aspects of sphingolipid biochemistry. World-renowned scientists from the field of lipid biology, specifically sphingolipid biochemistry, were gathered to write this book. Scholars from most continents of the globe committed to write diligently about their expertise and the newest findings in the relevant fields. This book came to fruition after almost a year and a half of laborious preparation and diligent writings. This book is targeted to the experienced reader who is looking to read about the various aspects of bioactive ceramide signaling, as well as to the newcomer into the field, as the topics are explained in concise yet very informative manner. The authors and editor wish all readers a pleasant time reading this volume, and are adamant that this book will meet all expectations.
Publisher: Springer Nature
ISBN: 3030211622
Category : Science
Languages : en
Pages : 159
Book Description
This book is about the various roles of bioactive ceramides and other sphingolipids in cellular biology. The enigmatic biophysical and biochemical properties of ceramides and their propensity to influence membranes whether as rafts or protein-permeable channels are heavily discussed. Metabolism of ceramides and their metabolites is also focused with ceramide synthase family of proteins being a target of extensive review. Ceramide 1-phosphate and other sphingolipids are also presented in cellular physiology and pathophysiology. Prokaryotic origins of mitochondria at the level of membranes and the occurrence of apoptosis in bacteria are presented. Many aspects of ceramide and sphingolipid biology are addressed in this book. Its focus is the metabolism of ceramide in normal and diseased states and the biophysical and biochemical mechanisms governing the bioactivity of these molecules. Sphingolipid research has surged over the past thirty years and this book gathers the recent findings of various aspects of sphingolipid biochemistry. World-renowned scientists from the field of lipid biology, specifically sphingolipid biochemistry, were gathered to write this book. Scholars from most continents of the globe committed to write diligently about their expertise and the newest findings in the relevant fields. This book came to fruition after almost a year and a half of laborious preparation and diligent writings. This book is targeted to the experienced reader who is looking to read about the various aspects of bioactive ceramide signaling, as well as to the newcomer into the field, as the topics are explained in concise yet very informative manner. The authors and editor wish all readers a pleasant time reading this volume, and are adamant that this book will meet all expectations.
The Origin of Eukaryotic Cells
Author: Betsey Dexter Dyer
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Science
Languages : en
Pages : 376
Book Description
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Science
Languages : en
Pages : 376
Book Description
Biology for AP ® Courses
Author: Julianne Zedalis
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Publisher:
ISBN: 9781947172401
Category : Biology
Languages : en
Pages : 1923
Book Description
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
In Search of Cell History
Author: Franklin M. Harold
Publisher: University of Chicago Press
ISBN: 022617431X
Category : Science
Languages : en
Pages : 318
Book Description
This comprehensive history of cell evolution “deftly discusses the definition of life” as well as cellular organization, classification and more (San Francisco Book Review). The origin of cells remains one of the most fundamental mysteries in biology, one that has spawned a large body of research and debate over the past two decades. With In Search of Cell History, Franklin M. Harold offers a comprehensive, impartial take on that research and the controversies that keep the field in turmoil. Written in accessible language and complemented by a glossary for easy reference, this book examines the relationship between cells and genes; the central role of bioenergetics in the origin of life; the status of the universal tree of life with its three stems and viral outliers; and the controversies surrounding the last universal common ancestor. Harold also discusses the evolution of cellular organization, the origin of complex cells, and the incorporation of symbiotic organelles. In Search of Cell History shows us just how far we have come in understanding cell evolution—and the evolution of life in general—and how far we still have to go. “Wonderful…A loving distillation of connections within the incredible diversity of life in the biosphere, framing one of biology’s most important remaining questions: how did life begin?”—Nature
Publisher: University of Chicago Press
ISBN: 022617431X
Category : Science
Languages : en
Pages : 318
Book Description
This comprehensive history of cell evolution “deftly discusses the definition of life” as well as cellular organization, classification and more (San Francisco Book Review). The origin of cells remains one of the most fundamental mysteries in biology, one that has spawned a large body of research and debate over the past two decades. With In Search of Cell History, Franklin M. Harold offers a comprehensive, impartial take on that research and the controversies that keep the field in turmoil. Written in accessible language and complemented by a glossary for easy reference, this book examines the relationship between cells and genes; the central role of bioenergetics in the origin of life; the status of the universal tree of life with its three stems and viral outliers; and the controversies surrounding the last universal common ancestor. Harold also discusses the evolution of cellular organization, the origin of complex cells, and the incorporation of symbiotic organelles. In Search of Cell History shows us just how far we have come in understanding cell evolution—and the evolution of life in general—and how far we still have to go. “Wonderful…A loving distillation of connections within the incredible diversity of life in the biosphere, framing one of biology’s most important remaining questions: how did life begin?”—Nature
The Logic of Chance
Author: Eugene V. Koonin
Publisher: FT Press
ISBN: 013262317X
Category : Science
Languages : en
Pages : 530
Book Description
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
Publisher: FT Press
ISBN: 013262317X
Category : Science
Languages : en
Pages : 530
Book Description
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
Understanding Evolution
Author: Kostas Kampourakis
Publisher: Cambridge University Press
ISBN: 1107034914
Category : Science
Languages : en
Pages : 275
Book Description
Bringing together conceptual obstacles and core concepts of evolutionary theory, this book presents evolution as straightforward and intuitive.
Publisher: Cambridge University Press
ISBN: 1107034914
Category : Science
Languages : en
Pages : 275
Book Description
Bringing together conceptual obstacles and core concepts of evolutionary theory, this book presents evolution as straightforward and intuitive.