The Elements of the Theory of Algebraic Numbers

The Elements of the Theory of Algebraic Numbers PDF Author: Legh Wilber Reid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description

The Elements of the Theory of Algebraic Numbers

The Elements of the Theory of Algebraic Numbers PDF Author: Legh Wilber Reid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description


Number Theory

Number Theory PDF Author: Helmut Koch
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.

Lectures on the Theory of Algebraic Numbers

Lectures on the Theory of Algebraic Numbers PDF Author: E. T. Hecke
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.

Classical Theory of Algebraic Numbers

Classical Theory of Algebraic Numbers PDF Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676

Get Book Here

Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

A Brief Guide to Algebraic Number Theory

A Brief Guide to Algebraic Number Theory PDF Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.

Elements of Number Theory

Elements of Number Theory PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387217355
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

Algebraic Number Theory and Fermat's Last Theorem

Algebraic Number Theory and Fermat's Last Theorem PDF Author: Ian Stewart
Publisher: CRC Press
ISBN: 143986408X
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it

Theory of Algebraic Integers

Theory of Algebraic Integers PDF Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
A translation of a classic work by one of the truly great figures of mathematics.

Elements of the Theory of Numbers

Elements of the Theory of Numbers PDF Author: Joseph B. Dence
Publisher: Academic Press
ISBN: 9780122091308
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
Elements of the Theory of Numbers teaches students how to develop, implement, and test numerical methods for standard mathematical problems. The authors have created a two-pronged pedagogical approach that integrates analysis and algebra with classical number theory. Making greater use of the language and concepts in algebra and analysis than is traditionally encountered in introductory courses, this pedagogical approach helps to instill in the minds of the students the idea of the unity of mathematics. Elements of the Theory of Numbers is a superb summary of classical material as well as allowing the reader to take a look at the exciting role of analysis and algebra in number theory. * In-depth coverage of classical number theory * Thorough discussion of the theory of groups and rings * Includes application of Taylor polynomials * Contains more advanced material than other texts * Illustrates the results of a theorem with an example * Excellent presentation of the standard computational exercises * Nearly 1000 problems--many are proof-oriented, several others require the writing of computer programs to complete the computations * Clear and well-motivated presentation * Provides historical references noting distinguished number theory luminaries such as Euclid, de Fermat, Hilbert, Brun, and Lehmer, to name a few * Annotated bibliographies appear at the end of all of the chapters

Algebra and Number Theory

Algebra and Number Theory PDF Author: Martyn R. Dixon
Publisher: John Wiley & Sons
ISBN: 9780470640531
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.