Author: Ralph Howard Fowler
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 128
Book Description
The Elementary Differential Geometry of Plane Curves
Author: Ralph Howard Fowler
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 128
Book Description
The Elementary Differential Geometry of Plane Curves
Author: Ralph Howard Fowler
Publisher:
ISBN:
Category : Curves, Plane
Languages : en
Pages : 124
Book Description
Publisher:
ISBN:
Category : Curves, Plane
Languages : en
Pages : 124
Book Description
Elementary Geometry of Differentiable Curves
Author: C. G. Gibson
Publisher: Cambridge University Press
ISBN: 9780521011075
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book is an introductory text on the differential geometry of plane curves.
Publisher: Cambridge University Press
ISBN: 9780521011075
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book is an introductory text on the differential geometry of plane curves.
Elementary Differential Geometry
Author: A.N. Pressley
Publisher: Springer Science & Business Media
ISBN: 1447136969
Category : Mathematics
Languages : en
Pages : 336
Book Description
Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Publisher: Springer Science & Business Media
ISBN: 1447136969
Category : Mathematics
Languages : en
Pages : 336
Book Description
Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Elementary Differential Geometry
Author: A.N. Pressley
Publisher: Springer Science & Business Media
ISBN: 1848828918
Category : Mathematics
Languages : en
Pages : 469
Book Description
Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul
Publisher: Springer Science & Business Media
ISBN: 1848828918
Category : Mathematics
Languages : en
Pages : 469
Book Description
Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul
The Elementary Differential Geometry of Plane Curves
Author: R. H. Fowler
Publisher: Forgotten Books
ISBN: 9781330044407
Category : Mathematics
Languages : en
Pages : 128
Book Description
Excerpt from The Elementary Differential Geometry of Plane Curves This tract is intended to present a precise account of the elementary differential properties of plane curves. The matter contained is in no sense new, but a suitable connected treatment in the English language has not been available. As a result, a number of interesting misconceptions are current in English text books. It is sufficient to mention two somewhat striking examples, (a) According to the ordinary definition of an envelope, as the locus of the limits of points of intersection of neighbouring curves, a curve is not the envelope of its circles of curvature, for neighbouring circles of curvature do not intersect. (b) The definitions of an asymptote - (1) a straight line, the distance from which of a point on the curve tends to zero as the point tends to infinity; (2) the limit of a tangent to the curve, whose point of contact tends to infinity - are not equivalent. The curve may have an asymptote according to the former definition, and the tangent may exist at every point, but have no limit as its point of contact tends to infinity. The subjects dealt with, and the general method of treatment, are similar to those of the usual chapters on geometry in any Cours d' Analyse, except that in general plane curves alone are considered. At the same time extensions to three dimensions are made in a somewhat arbitrary selection of places, where the extension is immediate, and forms a natural commentary on the two dimensional work, or presents special points of interest (Frenet's formulae). To make such extensions systematically would make the tract too long. The subject matter being wholly classical, no attempt has been made to give full references to sources of information; the reader however is referred at most stages to the analogous treatment of the subject in the Cours or Traite d' Analyse of de la Vallée Poussin, Goursat, Jordan or Picard, works to which the author is much indebted. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher: Forgotten Books
ISBN: 9781330044407
Category : Mathematics
Languages : en
Pages : 128
Book Description
Excerpt from The Elementary Differential Geometry of Plane Curves This tract is intended to present a precise account of the elementary differential properties of plane curves. The matter contained is in no sense new, but a suitable connected treatment in the English language has not been available. As a result, a number of interesting misconceptions are current in English text books. It is sufficient to mention two somewhat striking examples, (a) According to the ordinary definition of an envelope, as the locus of the limits of points of intersection of neighbouring curves, a curve is not the envelope of its circles of curvature, for neighbouring circles of curvature do not intersect. (b) The definitions of an asymptote - (1) a straight line, the distance from which of a point on the curve tends to zero as the point tends to infinity; (2) the limit of a tangent to the curve, whose point of contact tends to infinity - are not equivalent. The curve may have an asymptote according to the former definition, and the tangent may exist at every point, but have no limit as its point of contact tends to infinity. The subjects dealt with, and the general method of treatment, are similar to those of the usual chapters on geometry in any Cours d' Analyse, except that in general plane curves alone are considered. At the same time extensions to three dimensions are made in a somewhat arbitrary selection of places, where the extension is immediate, and forms a natural commentary on the two dimensional work, or presents special points of interest (Frenet's formulae). To make such extensions systematically would make the tract too long. The subject matter being wholly classical, no attempt has been made to give full references to sources of information; the reader however is referred at most stages to the analogous treatment of the subject in the Cours or Traite d' Analyse of de la Vallée Poussin, Goursat, Jordan or Picard, works to which the author is much indebted. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Elementary Differential Geometry
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Modern Differential Geometry of Curves and Surfaces with Mathematica
Author: Elsa Abbena
Publisher: CRC Press
ISBN: 1351992201
Category : Mathematics
Languages : en
Pages : 1024
Book Description
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Publisher: CRC Press
ISBN: 1351992201
Category : Mathematics
Languages : en
Pages : 1024
Book Description
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Elementary Differential Geometry
Author: Christian Bär
Publisher: Cambridge University Press
ISBN: 0521896711
Category : Mathematics
Languages : en
Pages : 335
Book Description
This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.
Publisher: Cambridge University Press
ISBN: 0521896711
Category : Mathematics
Languages : en
Pages : 335
Book Description
This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.
The Elementary Differential Geometry of Plane Curves (Classic Reprint)
Author: R. H. Fowler
Publisher: Forgotten Books
ISBN: 9780428367756
Category : Mathematics
Languages : en
Pages : 114
Book Description
Excerpt from The Elementary Differential Geometry of Plane Curves A limited selection of examples is given at the ends of the chapters. Besides their more Obvious function, these are intended to provide a summary of some of the more important extensions of the theorems proved in the text. References or sketches of a proof are therefore given in such cases, which should enable the reader to complete the proofs. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher: Forgotten Books
ISBN: 9780428367756
Category : Mathematics
Languages : en
Pages : 114
Book Description
Excerpt from The Elementary Differential Geometry of Plane Curves A limited selection of examples is given at the ends of the chapters. Besides their more Obvious function, these are intended to provide a summary of some of the more important extensions of the theorems proved in the text. References or sketches of a proof are therefore given in such cases, which should enable the reader to complete the proofs. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.