Author: Piotr T. Chruściel
Publisher: Springer Science & Business Media
ISBN: 9783764371302
Category : Science
Languages : en
Pages : 500
Book Description
Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.
The Einstein Equations and the Large Scale Behavior of Gravitational Fields
Author: Piotr T. Chruściel
Publisher: Springer Science & Business Media
ISBN: 9783764371302
Category : Science
Languages : en
Pages : 500
Book Description
Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.
Publisher: Springer Science & Business Media
ISBN: 9783764371302
Category : Science
Languages : en
Pages : 500
Book Description
Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.
The Einstein Equations and the Large Scale Behavior of Gravitational Fields
Author: Piotr T. Chrusciel
Publisher: Birkhäuser
ISBN: 3034879539
Category : Science
Languages : en
Pages : 487
Book Description
The book presents state-of-the-art results on the analysis of the Einstein equations and the large scale structure of their solutions. It combines in a unique way introductory chapters and surveys of various aspects of the analysis of the Einstein equations in the large. It discusses applications of the Einstein equations in geometrical studies and the physical interpretation of their solutions. Open problems concerning analytical and numerical aspects of the Einstein equations are pointed out. Background material on techniques in PDE theory, differential geometry, and causal theory is provided.
Publisher: Birkhäuser
ISBN: 3034879539
Category : Science
Languages : en
Pages : 487
Book Description
The book presents state-of-the-art results on the analysis of the Einstein equations and the large scale structure of their solutions. It combines in a unique way introductory chapters and surveys of various aspects of the analysis of the Einstein equations in the large. It discusses applications of the Einstein equations in geometrical studies and the physical interpretation of their solutions. Open problems concerning analytical and numerical aspects of the Einstein equations are pointed out. Background material on techniques in PDE theory, differential geometry, and causal theory is provided.
The Cauchy Problem in General Relativity
Author: Hans Ringström
Publisher: European Mathematical Society
ISBN: 9783037190531
Category : Mathematics
Languages : en
Pages : 310
Book Description
The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Publisher: European Mathematical Society
ISBN: 9783037190531
Category : Mathematics
Languages : en
Pages : 310
Book Description
The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Einstein Equations: Physical and Mathematical Aspects of General Relativity
Author: Sergio Cacciatori
Publisher: Springer Nature
ISBN: 3030180611
Category : Science
Languages : en
Pages : 359
Book Description
This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.
Publisher: Springer Nature
ISBN: 3030180611
Category : Science
Languages : en
Pages : 359
Book Description
This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.
General Relativity and Gravitation
Author: Abhay Ashtekar
Publisher: Cambridge University Press
ISBN: 1316298698
Category : Science
Languages : en
Pages : 697
Book Description
Explore spectacular advances in cosmology, relativistic astrophysics, gravitational wave science, mathematics, computational science, and the interface of gravitation and quantum physics with this unique celebration of the centennial of Einstein's discovery of general relativity. Twelve comprehensive and in-depth reviews, written by a team of world-leading international experts, together present an up-to-date overview of key topics at the frontiers of these areas, with particular emphasis on the significant developments of the last three decades. Interconnections with other fields of research are also highlighted, making this an invaluable resource for both new and experienced researchers. Commissioned by the International Society on General Relativity and Gravitation, and including accessible introductions to cutting-edge topics, ample references to original research papers, and informative colour figures, this is a definitive reference for researchers and graduate students in cosmology, relativity, and gravitational science.
Publisher: Cambridge University Press
ISBN: 1316298698
Category : Science
Languages : en
Pages : 697
Book Description
Explore spectacular advances in cosmology, relativistic astrophysics, gravitational wave science, mathematics, computational science, and the interface of gravitation and quantum physics with this unique celebration of the centennial of Einstein's discovery of general relativity. Twelve comprehensive and in-depth reviews, written by a team of world-leading international experts, together present an up-to-date overview of key topics at the frontiers of these areas, with particular emphasis on the significant developments of the last three decades. Interconnections with other fields of research are also highlighted, making this an invaluable resource for both new and experienced researchers. Commissioned by the International Society on General Relativity and Gravitation, and including accessible introductions to cutting-edge topics, ample references to original research papers, and informative colour figures, this is a definitive reference for researchers and graduate students in cosmology, relativity, and gravitational science.
Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191
Book Description
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191
Book Description
Philosophy of Physics
Author: Jeremy Butterfield
Publisher: Elsevier
ISBN: 0444515607
Category : Computers
Languages : en
Pages : 1481
Book Description
The ambition of this volume is twofold: to provide a comprehensive overview of the field and to serve as an indispensable reference work for anyone who wants to work in it. For example, any philosopher who hopes to make a contribution to the topic of the classical-quantum correspondence will have to begin by consulting Klaas Landsman's chapter. The organization of this volume, as well as the choice of topics, is based on the conviction that the important problems in the philosophy of physics arise from studying the foundations of the fundamental theories of physics. It follows that there is no sharp line to be drawn between philosophy of physics and physics itself. Some of the best work in the philosophy of physics is being done by physicists, as witnessed by the fact that several of the contributors to the volume are theoretical physicists: viz., Ellis, Emch, Harvey, Landsman, Rovelli, 't Hooft, the last of whom is a Nobel laureate. Key features - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences that have grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers
Publisher: Elsevier
ISBN: 0444515607
Category : Computers
Languages : en
Pages : 1481
Book Description
The ambition of this volume is twofold: to provide a comprehensive overview of the field and to serve as an indispensable reference work for anyone who wants to work in it. For example, any philosopher who hopes to make a contribution to the topic of the classical-quantum correspondence will have to begin by consulting Klaas Landsman's chapter. The organization of this volume, as well as the choice of topics, is based on the conviction that the important problems in the philosophy of physics arise from studying the foundations of the fundamental theories of physics. It follows that there is no sharp line to be drawn between philosophy of physics and physics itself. Some of the best work in the philosophy of physics is being done by physicists, as witnessed by the fact that several of the contributors to the volume are theoretical physicists: viz., Ellis, Emch, Harvey, Landsman, Rovelli, 't Hooft, the last of whom is a Nobel laureate. Key features - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences that have grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers
The Oxford Handbook of Philosophy of Physics
Author: Robert W. Batterman
Publisher: Oxford University Press
ISBN: 0199908354
Category : Science
Languages : en
Pages : 701
Book Description
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics---once thought to be a paradigm instance of unproblematic theory reduction---is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
Publisher: Oxford University Press
ISBN: 0199908354
Category : Science
Languages : en
Pages : 701
Book Description
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics---once thought to be a paradigm instance of unproblematic theory reduction---is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
3+1 Formalism in General Relativity
Author: Éric Gourgoulhon
Publisher: Springer
ISBN: 3642245250
Category : Science
Languages : en
Pages : 304
Book Description
This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.
Publisher: Springer
ISBN: 3642245250
Category : Science
Languages : en
Pages : 304
Book Description
This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.
Semiclassical and Stochastic Gravity
Author: Bei-Lok B. Hu
Publisher: Cambridge University Press
ISBN: 0521193575
Category : Science
Languages : en
Pages : 615
Book Description
An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.
Publisher: Cambridge University Press
ISBN: 0521193575
Category : Science
Languages : en
Pages : 615
Book Description
An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.