The Discontinuous Enrichment Method (DEM) for Multi-scale Transport Problems

The Discontinuous Enrichment Method (DEM) for Multi-scale Transport Problems PDF Author: Irina Kalashnikova
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 178

Get Book Here

Book Description
A discontinuous enrichment method (DEM) for the efficient finite element solution of advection-dominated transport problems in fluid mechanics whose solutions are known to possess multi-scale features is developed. Attention is focused specifically on the two-dimensional (2D) advection-diffusion equation, the usual scalar model for the Navier-Stokes equations. Following the basic DEM methodology [1], the usual Galerkin polynomial approximation is locally enriched by the free-space solutions to the governing homogeneous partial differential equation (PDE). For the constant-coefficient advection-diffusion equation, several families of free-space solutions are derived. These include a family of exponential functions that exhibit a steep gradient in some flow direction, and a family of discontinuous polynomials. A parametrization of the former class of functions with respect to an angle parameter is developed, so as to enable the systematic design and implementation of DEM elements of arbitrary orders. It is shown that the original constant-coefficient methodology has a natural extension to variable-coefficient advection-diffusion problems. For variable-coefficient transport problems, the approximation properties of DEM can be improved by augmenting locally the enrichment space with a "higher-order" enrichment function that solves the governing PDE with the advection field a(x) linearized to second order. A space of Lagrange multipliers, introduced at the element interfaces to enforce a weak continuity of the solution and related to the normal derivatives of the enrichment functions, is developed. The construction of several low and higher-order DEM elements fitting this paradigm is discussed in detail. Numerical results for several constant as well as variable-coefficient advection-diffusion benchmark problems reveal that these DEM elements outperform their standard Galerkin and stabilized Galerkin counterparts of comparable computational complexity by a large margin, especially when the flow is advection-dominated.

The Discontinuous Enrichment Method (DEM) for Multi-scale Transport Problems

The Discontinuous Enrichment Method (DEM) for Multi-scale Transport Problems PDF Author: Irina Kalashnikova
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 178

Get Book Here

Book Description
A discontinuous enrichment method (DEM) for the efficient finite element solution of advection-dominated transport problems in fluid mechanics whose solutions are known to possess multi-scale features is developed. Attention is focused specifically on the two-dimensional (2D) advection-diffusion equation, the usual scalar model for the Navier-Stokes equations. Following the basic DEM methodology [1], the usual Galerkin polynomial approximation is locally enriched by the free-space solutions to the governing homogeneous partial differential equation (PDE). For the constant-coefficient advection-diffusion equation, several families of free-space solutions are derived. These include a family of exponential functions that exhibit a steep gradient in some flow direction, and a family of discontinuous polynomials. A parametrization of the former class of functions with respect to an angle parameter is developed, so as to enable the systematic design and implementation of DEM elements of arbitrary orders. It is shown that the original constant-coefficient methodology has a natural extension to variable-coefficient advection-diffusion problems. For variable-coefficient transport problems, the approximation properties of DEM can be improved by augmenting locally the enrichment space with a "higher-order" enrichment function that solves the governing PDE with the advection field a(x) linearized to second order. A space of Lagrange multipliers, introduced at the element interfaces to enforce a weak continuity of the solution and related to the normal derivatives of the enrichment functions, is developed. The construction of several low and higher-order DEM elements fitting this paradigm is discussed in detail. Numerical results for several constant as well as variable-coefficient advection-diffusion benchmark problems reveal that these DEM elements outperform their standard Galerkin and stabilized Galerkin counterparts of comparable computational complexity by a large margin, especially when the flow is advection-dominated.

Encyclopedia of Computational Mechanics

Encyclopedia of Computational Mechanics PDF Author: Erwin Stein
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 870

Get Book Here

Book Description
The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.

The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: Chongmin Song
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 775

Get Book Here

Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

Peridynamic Differential Operator for Numerical Analysis

Peridynamic Differential Operator for Numerical Analysis PDF Author: Erdogan Madenci
Publisher: Springer
ISBN: 3030026477
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.

Computational Methods for Fracture

Computational Methods for Fracture PDF Author: Timon Rabczuk
Publisher: MDPI
ISBN: 3039216864
Category : Technology & Engineering
Languages : en
Pages : 406

Get Book Here

Book Description
This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Computational Contact Mechanics

Computational Contact Mechanics PDF Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 3211772987
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.

Particulate Discrete Element Modelling

Particulate Discrete Element Modelling PDF Author: Catherine O'Sullivan
Publisher: CRC Press
ISBN: 1482266490
Category : Technology & Engineering
Languages : en
Pages : 574

Get Book Here

Book Description
The first single work on DEM providing the information to get started with this powerful numerical modelling approach. Provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. It will be of use to professionals, researchers and higher level students, with a theoretical overview of DEM as well as practical guidance.Selected Contents: 1.Introduction 2.Use of DEM in Geomechanics 3.Calculation of Contact Forces 4.Particle Motion 5.Particle Types 6.Boundary Conditions 7.Initial Geometry and Specimen Generation 8.Time Integration and Discrete Element Modelling 9.DEM Interpretation: A Continuum Perspective 10.Postprocessing: Graphical Interpretation of DEM Simulations 11.Basic Statisti

Extended Finite Element Method

Extended Finite Element Method PDF Author: Amir R. Khoei
Publisher: John Wiley & Sons
ISBN: 1118457684
Category : Science
Languages : en
Pages : 600

Get Book Here

Book Description
Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Statistical Models for the Fracture of Disordered Media

Statistical Models for the Fracture of Disordered Media PDF Author: H.J. Herrmann
Publisher: Elsevier
ISBN: 1483296121
Category : Technology & Engineering
Languages : en
Pages : 368

Get Book Here

Book Description
Since the beginning of the century the technological desire to master the fracture of metals, concrete or polymers has boosted research and has left behind an overwhelming amount of literature. In a field where it seems difficult to say anything simple and new, the editors and authors of this book have managed to do just that.The approach to fracture taken here was not conceived by mechanical engineers or material scientists. It is essentially the by-product of exciting developments that have occurred in the last ten to fifteen years within a branch of theoretical physics, called statistical physics. Concepts such as ``percolation'' and ``fractals'', as models for the properties of fracture are not often considered by engineers. A particular aim of this volume is to emphasize the fundamental role disorder plays in the breaking process.The main scope of the volume is pedagogical and is at the same time an overview of fracture mechanics for physicists and an introduction to new concepts of statistical physics for mechanics and engineers. To this end the first half of the book consists of introductory chapters and the second half contains the results that have emerged from this new approach.

Democracy and Education

Democracy and Education PDF Author: John Dewey
Publisher: Createspace Independent Publishing Platform
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 456

Get Book Here

Book Description
. Renewal of Life by Transmission. The most notable distinction between living and inanimate things is that the former maintain themselves by renewal. A stone when struck resists. If its resistance is greater than the force of the blow struck, it remains outwardly unchanged. Otherwise, it is shattered into smaller bits. Never does the stone attempt to react in such a way that it may maintain itself against the blow, much less so as to render the blow a contributing factor to its own continued action. While the living thing may easily be crushed by superior force, it none the less tries to turn the energies which act upon it into means of its own further existence. If it cannot do so, it does not just split into smaller pieces (at least in the higher forms of life), but loses its identity as a living thing. As long as it endures, it struggles to use surrounding energies in its own behalf. It uses light, air, moisture, and the material of soil. To say that it uses them is to say that it turns them into means of its own conservation. As long as it is growing, the energy it expends in thus turning the environment to account is more than compensated for by the return it gets: it grows. Understanding the word "control" in this sense, it may be said that a living being is one that subjugates and controls for its own continued activity the energies that would otherwise use it up. Life is a self-renewing process through action upon the environment.