The DIII-D National Fusion Program

The DIII-D National Fusion Program PDF Author: United States. Department of Energy
Publisher:
ISBN:
Category : Nuclear fusion
Languages : en
Pages :

Get Book Here

Book Description

The DIII-D National Fusion Program

The DIII-D National Fusion Program PDF Author: United States. Department of Energy
Publisher:
ISBN:
Category : Nuclear fusion
Languages : en
Pages :

Get Book Here

Book Description


Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The DIII-D National Team consists of about 120 operating staff and 100 research scientists drawn from 9 U.S. National Laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. This multi-institution collaboration carries out the integrated DIII-D program mission which is to establish the scientific basis for the optimization of the tokamak approach to fusion energy production. Presently, about two-thirds of the research physics staff are from the national and international collaborating institutions.

Fusion Energy Program

Fusion Energy Program PDF Author: United States. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Investigations and Oversight
Publisher:
ISBN:
Category : Fusion reactors
Languages : en
Pages : 820

Get Book Here

Book Description


Collaboration on DIII-D Five Year Plan

Collaboration on DIII-D Five Year Plan PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
This document summarizes Lawrence Livermore National Laboratory's (LLNL) plan for fusion research on the DIII-D Tokamak, located at General Atomics (GA) in San Diego, California, in the time period FY04-FY08. This document is a companion document to the DIII-D Five-Year Program Plan; which hereafter will be referred to as the ''D3DPP''. The LLNL Collaboration on DIII-D is a task-driven program in which we bring to bear the full range of expertise needed to complete specific goals of plasma science research on the DIII-D facility. This document specifies our plasma performance and physics understanding goals and gives detailed plans to achieve those goals in terms of experimental leadership, code development and analysis, and diagnostic development. Our program is designed to be consistent with the long-term mission of the DIII-D program as documented in the D3DPP. The overall DIII-D Program mission is ''to establish the scientific basis for the optimization of the tokamak approach to fusion energy production''. LLNL Magnetic Fusion Energy (MFE) supports this mission, and we contribute to two areas of the DIII-D program: divertor physics and advanced tokamak (AT) physics. We lead or contribute to the whole cycle of research: experimental planning, diagnostic development, execution of experiments, and detailed analysis. We plan to continue this style in the next five years. DIII-D has identified three major research themes: AT physics, confinement physics, and mass transport. The LLNL program is part of the AT theme: measurement of the plasma current profile, and the mass transport theme: measurement and modeling of plasma flow. In the AT area, we have focused on the measurement and modeling of the current profile in Advanced Tokamak plasmas. The current profile, and it's effect on MHD stability of the high-[beta] ''AT'' plasma are at the heart of the DIII-D program. LLNL has played a key role in the development of the Motional Stark Effect (MSE) diagnostic. Starting with a single channel, the system has grown to 40 channels with three separate systems. We have continually developed new calibration techniques, with a goal of accuracy in the magnetic field pitch angle measurements of ≈0.1 degree. Measurements of the radial electric field E{sub r} have also been achieved. In the next five year period, GA plans on rotating one of the neutral beams so that it injects opposite to the sense of the plasma current (counter-injection). This enables two orthogonal MSE views of the neutral beam so that J(r) and E{sub r} can be obtained directly. In addition, the new views can be optimized so that increased spatial resolution will be obtained. Our plan is to install these new systems when the neutral beam is reoriented, and continue to provide high-resolution, ''state of the art'' current profile measurements for the DIII-D AT program. In the divertor physics area, our goal is the development of a model of the scrapeoff layer (SOL) and divertor plasmas which is benchmarked with data. We have identified the need for measurements of SOL flow and ion temperature. Working with GA, we are proposing a new edge Charge Exchange Recombination (CER) diagnostic. The understanding of SOL flow is important for understanding the tritium inventory problem in ITER. In addition, using plasma flow to ''entrain'' impurities in the divertor region (enabling a low density radiative divertor) is the current AT divertor heat flux control scenario. We are also augmenting our edge modeling capabilities with a coupled UEDGE (fluid code) with the BOUT (edge turbulence) code. Further work, funded through LLNL theory, is planned to develop a kinetic treatment of the edge. All of these efforts contribute to the understanding of the edge pedestal in the tokamak, an important AT and ITER topic. A secondary goal is the understanding of Edge Localized Modes (ELMs), which are also important in the ITER design, as the repetitive bursts of heat flux can cause increased erosion and damage to the divertor plates. The modeling effort, particularly the kinetic treatment of the pedestal region described above, is aimed at an understanding of the pedestal plasma. We plan to add fast data acquisition to several of the DIII-D edge and SOL diagnostics, e.g. the filterscopes, and imaging spectroscopic cameras, so that we can study the fast time evolution of ELMs.

An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program

An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309183197
Category : Science
Languages : en
Pages : 112

Get Book Here

Book Description
The purpose of this assessment of the fusion energy sciences program of the Department of Energy's (DOE's) Office of Science is to evaluate the quality of the research program and to provide guidance for the future program strategy aimed at strengthening the research component of the program. The committee focused its review of the fusion program on magnetic confinement, or magnetic fusion energy (MFE), and touched only briefly on inertial fusion energy (IFE), because MFE-relevant research accounts for roughly 95 percent of the funding in the Office of Science's fusion program. Unless otherwise noted, all references to fusion in this report should be assumed to refer to magnetic fusion. Fusion research carried out in the United States under the sponsorship of the Office of Fusion Energy Sciences (OFES) has made remarkable strides over the years and recently passed several important milestones. For example, weakly burning plasmas with temperatures greatly exceeding those on the surface of the Sun have been created and diagnosed. Significant progress has been made in understanding and controlling instabilities and turbulence in plasma fusion experiments, thereby facilitating improved plasma confinement-remotely controlling turbulence in a 100-million-degree medium is a premier scientific achievement by any measure. Theory and modeling are now able to provide useful insights into instabilities and to guide experiments. Experiments and associated diagnostics are now able to extract enough information about the processes occurring in high-temperature plasmas to guide further developments in theory and modeling. Many of the major experimental and theoretical tools that have been developed are now converging to produce a qualitative change in the program's approach to scientific discovery. The U.S. program has traditionally been an important source of innovation and discovery for the international fusion energy effort. The goal of understanding at a fundamental level the physical processes governing observed plasma behavior has been a distinguishing feature of the program.

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309487439
Category : Science
Languages : en
Pages : 341

Get Book Here

Book Description
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.

Remote Collaboration and Data Access at the DIII-D National Fusion Facility

Remote Collaboration and Data Access at the DIII-D National Fusion Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
As the number of on-site and remote collaborators has increased, the demands on the DIII-D National Program's computational infrastructure has become more severe. The Director of the DIII-D Program recognized the increased importance of computers in carrying out the DIII-D mission and in late 1997 formed the Data Analysis Programming Group. Utilizing both software and hardware improvements, this new group has been charged with increasing the DIII-D data analysis throughput and data retrieval rate. Understanding the importance of the remote collaborators, this group has developed a long term plan that will allow for fast 24 hour data access (7x24) with complete documentation and a set of data viewing and analysis tools that can be run either on the collaborators' or DIII-D's computer systems. This paper presents the group's long term plan and progress to date.

The fusion energy program the role of TPX and alternate concepts.

The fusion energy program the role of TPX and alternate concepts. PDF Author:
Publisher: DIANE Publishing
ISBN: 1428920188
Category :
Languages : en
Pages : 94

Get Book Here

Book Description


The Department of Energy's Restructured Fusion Energy Sciences Program

The Department of Energy's Restructured Fusion Energy Sciences Program PDF Author: United States. Congress. House. Committee on Science. Subcommittee on Energy and Environment
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 682

Get Book Here

Book Description


Interim Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research

Interim Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309469333
Category : Science
Languages : en
Pages : 61

Get Book Here

Book Description
In January 2003, President George W. Bush announced that the United States would begin negotiations to join the ITER project and noted that "if successful, ITER would create the first fusion device capable of producing thermal energy comparable to the output of a power plant, making commercially viable fusion power available as soon as 2050." The United States and the other ITER members are now constructing ITER with the aim to demonstrate that magnetically confined plasmas can produce more fusion power than the power needed to sustain the plasma. This is a critical step towards producing and delivering electricity from fusion energy. Since the international establishment of the ITER project, ITER's construction schedule has slipped and ITER's costs have increased significantly, leading to questions about whether the United States should continue its commitment to participate in ITER. This study will advise how to best advance the fusion energy sciences in the United States given developments in the field, the specific international investments in fusion science and technology, and the priorities for the next ten years developed by the community and the Office of Fusion Energy Sciences (FES) that were recently reported to Congress. It will address the scientific justification and needs for strengthening the foundations for realizing fusion energy given a potential choice of U.S. participation or not in the ITER project, and develops future scenarios in either case. This interim report assesses the current status of U.S. fusion research and of the importance of burning plasma research to the development of fusion energy as well as to plasma science and other science and engineering disciplines. The final report will present strategies that incorporate continued progress toward a burning plasma experiment and a focus on innovation.