Author: Arthur J. Baroody
Publisher: Routledge
ISBN: 1135672229
Category : Education
Languages : en
Pages : 516
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
The Development of Arithmetic Concepts and Skills
Author: Arthur J. Baroody
Publisher: Routledge
ISBN: 1135672229
Category : Education
Languages : en
Pages : 516
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
Publisher: Routledge
ISBN: 1135672229
Category : Education
Languages : en
Pages : 516
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
The Development of Arithmetic Concepts and Skills
Author: Arthur J. Baroody
Publisher: Routledge
ISBN: 1135672237
Category : Education
Languages : en
Pages : 513
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
Publisher: Routledge
ISBN: 1135672237
Category : Education
Languages : en
Pages : 513
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts
Author: David C. Geary
Publisher: Academic Press
ISBN: 0128133686
Category : Psychology
Languages : en
Pages : 362
Book Description
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts focuses on typical and atypical learning of complex arithmetic skills and higher-order math concepts. As part of the series Mathematical Cognition and Learning, this volume covers recent advances in the understanding of children's developing competencies with whole-number arithmetic, fractions, and rational numbers. Each chapter covers these topics from multiple perspectives, including genetic disorders, cognition, instruction, and neural networks. - Covers innovative measures and recent methodological advances in mathematical thinking and learning - Contains contributions that improve instruction and education in these domains - Informs policy aimed at increasing the level of mathematical proficiency in the general public
Publisher: Academic Press
ISBN: 0128133686
Category : Psychology
Languages : en
Pages : 362
Book Description
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts focuses on typical and atypical learning of complex arithmetic skills and higher-order math concepts. As part of the series Mathematical Cognition and Learning, this volume covers recent advances in the understanding of children's developing competencies with whole-number arithmetic, fractions, and rational numbers. Each chapter covers these topics from multiple perspectives, including genetic disorders, cognition, instruction, and neural networks. - Covers innovative measures and recent methodological advances in mathematical thinking and learning - Contains contributions that improve instruction and education in these domains - Informs policy aimed at increasing the level of mathematical proficiency in the general public
Conceptual and Procedural Knowledge
Author: James Hiebert
Publisher: Routledge
ISBN: 1136559833
Category : Education
Languages : en
Pages : 357
Book Description
First Published in 1986. This book is intended for those people who are interested in how mathematics is learned. It is intended especially for those who are interested in the mental processes involved in becoming mathematically competent and the mental processes that inhibit such competency from developing. The volume opens with an overview of the issue and then traces the relationships between conceptual and procedural knowledge in mathematics from preschool days through the years of formal schooling. Mathematics educators and cognitive psychologists from a variety of perspectives contribute theoretical arguments and empirical data to illuminate the nature of the relationships and, in tum, the nature of mathematics learning.
Publisher: Routledge
ISBN: 1136559833
Category : Education
Languages : en
Pages : 357
Book Description
First Published in 1986. This book is intended for those people who are interested in how mathematics is learned. It is intended especially for those who are interested in the mental processes involved in becoming mathematically competent and the mental processes that inhibit such competency from developing. The volume opens with an overview of the issue and then traces the relationships between conceptual and procedural knowledge in mathematics from preschool days through the years of formal schooling. Mathematics educators and cognitive psychologists from a variety of perspectives contribute theoretical arguments and empirical data to illuminate the nature of the relationships and, in tum, the nature of mathematics learning.
The Development of Arithmetic Concepts and Skills
Author: Arthur J. Baroody
Publisher:
ISBN: 9780814106075
Category : Arithmetic
Languages : en
Pages : 494
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: what is the nature of arithmetic expertise? and how can instruction best promote it?
Publisher:
ISBN: 9780814106075
Category : Arithmetic
Languages : en
Pages : 494
Book Description
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: what is the nature of arithmetic expertise? and how can instruction best promote it?
Introduction to Mathematical Thinking
Author: Keith J. Devlin
Publisher:
ISBN: 9780615653631
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Publisher:
ISBN: 9780615653631
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
The Handbook of Mathematical Cognition
Author: Jamie I.D. Campbell
Publisher: Psychology Press
ISBN: 1135423660
Category : Psychology
Languages : en
Pages : 527
Book Description
How does the brain represent number and make mathematical calculations? What underlies the development of numerical and mathematical abilities? What factors affect the learning of numerical concepts and skills? What are the biological bases of number knowledge? Do humans and other animals share similar numerical representations and processes? What underlies numerical and mathematical disabilities and disorders, and what is the prognosis for rehabilitation? These questions are the domain of mathematical cognition, the field of research concerned with the cognitive and neurological processes that underlie numerical and mathematical abilities. TheHandbook of Mathematical Cognition is a collection of 27 essays by leading researchers that provides a comprehensive review of this important research field.
Publisher: Psychology Press
ISBN: 1135423660
Category : Psychology
Languages : en
Pages : 527
Book Description
How does the brain represent number and make mathematical calculations? What underlies the development of numerical and mathematical abilities? What factors affect the learning of numerical concepts and skills? What are the biological bases of number knowledge? Do humans and other animals share similar numerical representations and processes? What underlies numerical and mathematical disabilities and disorders, and what is the prognosis for rehabilitation? These questions are the domain of mathematical cognition, the field of research concerned with the cognitive and neurological processes that underlie numerical and mathematical abilities. TheHandbook of Mathematical Cognition is a collection of 27 essays by leading researchers that provides a comprehensive review of this important research field.
The Development of Mathematical Skills
Author: Chris Donlan
Publisher: Psychology Press
ISBN: 1317715454
Category : Psychology
Languages : en
Pages : 356
Book Description
Cutting edge research from a diverse range of viewpoints Central section dedicated to the arithmetical development of memory.
Publisher: Psychology Press
ISBN: 1317715454
Category : Psychology
Languages : en
Pages : 356
Book Description
Cutting edge research from a diverse range of viewpoints Central section dedicated to the arithmetical development of memory.
Oxford Handbook of Numerical Cognition
Author: Roi Cohen Kadosh
Publisher: Oxford University Press
ISBN: 0191036013
Category : Psychology
Languages : en
Pages : 1515
Book Description
How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.
Publisher: Oxford University Press
ISBN: 0191036013
Category : Psychology
Languages : en
Pages : 1515
Book Description
How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.
Hypothetical Learning Trajectories
Author: Douglas H. Clements
Publisher: Routledge
ISBN: 1136506942
Category : Education
Languages : en
Pages : 188
Book Description
The purpose of this special issue is to present several research perspectives on learning trajectories with the intention of encouraging the broader community to reflect on, better define, adopt, adapt, or challenge the concept. The issue begins by briefly introducing learning trajectories. The remaining articles provide elaboration, examples, and discussion of the construct. They purposefully are intended to be illustrative, exploratory, and provocative with regard to learning trajectories construct; they are not a set of verification studies.
Publisher: Routledge
ISBN: 1136506942
Category : Education
Languages : en
Pages : 188
Book Description
The purpose of this special issue is to present several research perspectives on learning trajectories with the intention of encouraging the broader community to reflect on, better define, adopt, adapt, or challenge the concept. The issue begins by briefly introducing learning trajectories. The remaining articles provide elaboration, examples, and discussion of the construct. They purposefully are intended to be illustrative, exploratory, and provocative with regard to learning trajectories construct; they are not a set of verification studies.