Author: Peter Goos
Publisher: Springer Science & Business Media
ISBN: 1461300517
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a comprehensive treatment of the design of blocked and split-plot experiments. The optimal design approach advocated in the book will help applied statisticians from industry, medicine, agriculture, chemistry and many other fields of study in setting up tailor-made experiments. The book also contains a theoretical background, a thorough review of the recent work in the area of blocked and split-plot experiments, and a number of interesting theoretical results.
The Optimal Design of Blocked and Split-Plot Experiments
Author: Peter Goos
Publisher: Springer Science & Business Media
ISBN: 1461300517
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a comprehensive treatment of the design of blocked and split-plot experiments. The optimal design approach advocated in the book will help applied statisticians from industry, medicine, agriculture, chemistry and many other fields of study in setting up tailor-made experiments. The book also contains a theoretical background, a thorough review of the recent work in the area of blocked and split-plot experiments, and a number of interesting theoretical results.
Publisher: Springer Science & Business Media
ISBN: 1461300517
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a comprehensive treatment of the design of blocked and split-plot experiments. The optimal design approach advocated in the book will help applied statisticians from industry, medicine, agriculture, chemistry and many other fields of study in setting up tailor-made experiments. The book also contains a theoretical background, a thorough review of the recent work in the area of blocked and split-plot experiments, and a number of interesting theoretical results.
Optimal Design of Experiments
Author: Peter Goos
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Design and Analysis of Experiments with R
Author: John Lawson
Publisher: CRC Press
ISBN: 1498728480
Category : Mathematics
Languages : en
Pages : 629
Book Description
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,
Publisher: CRC Press
ISBN: 1498728480
Category : Mathematics
Languages : en
Pages : 629
Book Description
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,
Formulation Simplified
Author: Mark J. Anderson
Publisher: Taylor & Francis
ISBN: 1351677527
Category : Business & Economics
Languages : en
Pages : 190
Book Description
Many chemists – especially those most brilliant in their field – fail to appreciate the power of planned experimentation. They dislike the mathematical aspects of statistical analysis. In addition, these otherwise very capable chemists also dismissed predictive models based only on empirical data. Ironically, in the hands of subject matter experts like these elite chemists, the statistical methods of mixture design and analysis provide the means for rapidly converging on optimal compositions. What differentiates Formulation Simplified from the standard statistical texts on mixture design is that the authors make the topic relatively easy and fun to read. They provide a whole new collection of insighful original studies that illustrate the essentials of mixture design and analysis. Solid industrial examples are offered as problems at the end of many chapters for those who are serious about trying new tools on their own. Statistical software to do the computations can be freely accessed via a web site developed in support of this book.
Publisher: Taylor & Francis
ISBN: 1351677527
Category : Business & Economics
Languages : en
Pages : 190
Book Description
Many chemists – especially those most brilliant in their field – fail to appreciate the power of planned experimentation. They dislike the mathematical aspects of statistical analysis. In addition, these otherwise very capable chemists also dismissed predictive models based only on empirical data. Ironically, in the hands of subject matter experts like these elite chemists, the statistical methods of mixture design and analysis provide the means for rapidly converging on optimal compositions. What differentiates Formulation Simplified from the standard statistical texts on mixture design is that the authors make the topic relatively easy and fun to read. They provide a whole new collection of insighful original studies that illustrate the essentials of mixture design and analysis. Solid industrial examples are offered as problems at the end of many chapters for those who are serious about trying new tools on their own. Statistical software to do the computations can be freely accessed via a web site developed in support of this book.
Response Surfaces, Mixtures, and Ridge Analyses
Author: George E. P. Box
Publisher: John Wiley & Sons
ISBN: 047007275X
Category : Mathematics
Languages : en
Pages : 880
Book Description
The authority on building empirical models and the fitting of such surfaces to data—completely updated and revised Revising and updating a volume that represents the essential source on building empirical models, George Box and Norman Draper—renowned authorities in this field—continue to set the standard with the Second Edition of Response Surfaces, Mixtures, and Ridge Analyses, providing timely new techniques, new exercises, and expanded material. A comprehensive introduction to building empirical models, this book presents the general philosophy and computational details of a number of important topics, including factorial designs at two levels; fitting first and second-order models; adequacy of estimation and the use of transformation; and occurrence and elucidation of ridge systems. Substantially rewritten, the Second Edition reflects the emergence of ridge analysis of second-order response surfaces as a very practical tool that can be easily applied in a variety of circumstances. This unique, fully developed coverage of ridge analysis—a technique for exploring quadratic response surfaces including surfaces in the space of mixture ingredients and/or subject to linear restrictions—includes MINITAB® routines for performing the calculations for any number of dimensions. Many additional figures are included in the new edition, and new exercises (many based on data from published papers) offer insight into the methods used. The exercises and their solutions provide a variety of supplementary examples of response surface use, forming an extremely important component of the text. Response Surfaces, Mixtures, and Ridge Analyses, Second Edition presents material in a logical and understandable arrangement and includes six new chapters covering an up-to-date presentation of standard ridge analysis (without restrictions); design and analysis of mixtures experiments; ridge analysis methods when there are linear restrictions in the experimental space including the mixtures experiments case, with or without further linear restrictions; and canonical reduction of second-order response surfaces in the foregoing general case. Additional features in the new edition include: New exercises with worked answers added throughout An extensive revision of Chapter 5: Blocking and Fractionating 2k Designs Additional discussion on the projection of two-level designs into lower dimensional spaces This is an ideal reference for researchers as well as a primary text for Response Surface Methodology graduate-level courses and a supplementary text for Design of Experiments courses at the upper-undergraduate and beginning-graduate levels.
Publisher: John Wiley & Sons
ISBN: 047007275X
Category : Mathematics
Languages : en
Pages : 880
Book Description
The authority on building empirical models and the fitting of such surfaces to data—completely updated and revised Revising and updating a volume that represents the essential source on building empirical models, George Box and Norman Draper—renowned authorities in this field—continue to set the standard with the Second Edition of Response Surfaces, Mixtures, and Ridge Analyses, providing timely new techniques, new exercises, and expanded material. A comprehensive introduction to building empirical models, this book presents the general philosophy and computational details of a number of important topics, including factorial designs at two levels; fitting first and second-order models; adequacy of estimation and the use of transformation; and occurrence and elucidation of ridge systems. Substantially rewritten, the Second Edition reflects the emergence of ridge analysis of second-order response surfaces as a very practical tool that can be easily applied in a variety of circumstances. This unique, fully developed coverage of ridge analysis—a technique for exploring quadratic response surfaces including surfaces in the space of mixture ingredients and/or subject to linear restrictions—includes MINITAB® routines for performing the calculations for any number of dimensions. Many additional figures are included in the new edition, and new exercises (many based on data from published papers) offer insight into the methods used. The exercises and their solutions provide a variety of supplementary examples of response surface use, forming an extremely important component of the text. Response Surfaces, Mixtures, and Ridge Analyses, Second Edition presents material in a logical and understandable arrangement and includes six new chapters covering an up-to-date presentation of standard ridge analysis (without restrictions); design and analysis of mixtures experiments; ridge analysis methods when there are linear restrictions in the experimental space including the mixtures experiments case, with or without further linear restrictions; and canonical reduction of second-order response surfaces in the foregoing general case. Additional features in the new edition include: New exercises with worked answers added throughout An extensive revision of Chapter 5: Blocking and Fractionating 2k Designs Additional discussion on the projection of two-level designs into lower dimensional spaces This is an ideal reference for researchers as well as a primary text for Response Surface Methodology graduate-level courses and a supplementary text for Design of Experiments courses at the upper-undergraduate and beginning-graduate levels.
Optimum Experimental Designs, With SAS
Author: Anthony Atkinson
Publisher: OUP Oxford
ISBN: 0191537942
Category : Mathematics
Languages : en
Pages : 528
Book Description
Experiments on patients, processes or plants all have random error, making statistical methods essential for their efficient design and analysis. This book presents the theory and methods of optimum experimental design, making them available through the use of SAS programs. Little previous statistical knowledge is assumed. The first part of the book stresses the importance of models in the analysis of data and introduces least squares fitting and simple optimum experimental designs. The second part presents a more detailed discussion of the general theory and of a wide variety of experiments. The book stresses the use of SAS to provide hands-on solutions for the construction of designs in both standard and non-standard situations. The mathematical theory of the designs is developed in parallel with their construction in SAS, so providing motivation for the development of the subject. Many chapters cover self-contained topics drawn from science, engineering and pharmaceutical investigations, such as response surface designs, blocking of experiments, designs for mixture experiments and for nonlinear and generalized linear models. Understanding is aided by the provision of "SAS tasks" after most chapters as well as by more traditional exercises and a fully supported website. The authors are leading experts in key fields and this book is ideal for statisticians and scientists in academia, research and the process and pharmaceutical industries.
Publisher: OUP Oxford
ISBN: 0191537942
Category : Mathematics
Languages : en
Pages : 528
Book Description
Experiments on patients, processes or plants all have random error, making statistical methods essential for their efficient design and analysis. This book presents the theory and methods of optimum experimental design, making them available through the use of SAS programs. Little previous statistical knowledge is assumed. The first part of the book stresses the importance of models in the analysis of data and introduces least squares fitting and simple optimum experimental designs. The second part presents a more detailed discussion of the general theory and of a wide variety of experiments. The book stresses the use of SAS to provide hands-on solutions for the construction of designs in both standard and non-standard situations. The mathematical theory of the designs is developed in parallel with their construction in SAS, so providing motivation for the development of the subject. Many chapters cover self-contained topics drawn from science, engineering and pharmaceutical investigations, such as response surface designs, blocking of experiments, designs for mixture experiments and for nonlinear and generalized linear models. Understanding is aided by the provision of "SAS tasks" after most chapters as well as by more traditional exercises and a fully supported website. The authors are leading experts in key fields and this book is ideal for statisticians and scientists in academia, research and the process and pharmaceutical industries.
Response Surface Methodology and Related Topics
Author: Andr I. Khuri
Publisher: World Scientific
ISBN: 9812774734
Category : Mathematics
Languages : en
Pages : 474
Book Description
This is the first edited volume on response surface methodology (RSM). It contains 17 chapters written by leading experts in the field and covers a wide variety of topics ranging from areas in classical RSM to more recent modeling approaches within the framework of RSM, including the use of generalized linear models. Topics covering particular aspects of robust parameter design, response surface optimization, mixture experiments, and a variety of new graphical approaches in RSM are also included. The main purpose of this volume is to provide an overview of the key ideas that have shaped RSM, and to bring attention to recent research directions and developments in RSM, which can have many useful applications in a variety of fields. The volume will be very helpful to researchers as well as practitioners interested in RSM''s theory and potential applications. It will be particularly useful to individuals who have used RSM methods in the past, but have not kept up with its recent developments, both in theory and applications. Sample Chapter(s). Chapter 1: Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two. Part 2 (560 KB). Contents: Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two. Part 2 (Y J Yang & N R Draper); Response Surface Experiments on Processes with High Variation (S G Gilmour & L A Trinca); Random Run Order, Randomization and Inadvertent Split-Plots in Response Surface Experiments (J Ganju & J M Lucas); Statistical Inference for Response Surface Optima (D K J Lin & J J Peterson); A Search Method for the Exploration of New Regions in Robust Parameter Design (G Mer-Quesada & E del Castillo); Response Surface Approaches to Robust Parameter Design (T J Robinson & S S Wulff); Response Surface Methods and Their Application in the Treatment of Cancer with Drug Combinations: Some Reflections (K S Dawson et al.); Generalized Linear Models and Response Transformation (A C Atkinson); GLM Designs: The Dependence on Unknown Parameters Dilemma (A I Khuri & S Mukhopadhyay); Design for a Trinomial Response to Dose (S K Fan & K Chaloner); Evaluating the Performance of Non-Standard Designs: The San Cristobal Design (L M Haines); 50 Years of Mixture Experiment Research: 1955OCo2004 (G F Piepel); Graphical Methods for Comparing Response Surface Designs for Experiments with Mixture Components (H B Goldfarb & D C Montgomery); Graphical Methods for Assessing the Prediction Capability of Response Surface Designs (J J Borkowski); Using Fraction of Design Space Plots for Informative Comparisons between Designs (C M Anderson-Cook & A Ozol-Godfrey); Concepts of Slope-Rotatability for Second Order Response Surface Designs (S H Park); Design of Experiments for Estimating Differences between Responses and Slopes of the Response (S Huda). Readership: Researchers in academia and industry interested in response surface methodology and its applications; engineers interested in improving quality and productivity in industry."
Publisher: World Scientific
ISBN: 9812774734
Category : Mathematics
Languages : en
Pages : 474
Book Description
This is the first edited volume on response surface methodology (RSM). It contains 17 chapters written by leading experts in the field and covers a wide variety of topics ranging from areas in classical RSM to more recent modeling approaches within the framework of RSM, including the use of generalized linear models. Topics covering particular aspects of robust parameter design, response surface optimization, mixture experiments, and a variety of new graphical approaches in RSM are also included. The main purpose of this volume is to provide an overview of the key ideas that have shaped RSM, and to bring attention to recent research directions and developments in RSM, which can have many useful applications in a variety of fields. The volume will be very helpful to researchers as well as practitioners interested in RSM''s theory and potential applications. It will be particularly useful to individuals who have used RSM methods in the past, but have not kept up with its recent developments, both in theory and applications. Sample Chapter(s). Chapter 1: Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two. Part 2 (560 KB). Contents: Two-Level Factorial and Fractional Factorial Designs in Blocks of Size Two. Part 2 (Y J Yang & N R Draper); Response Surface Experiments on Processes with High Variation (S G Gilmour & L A Trinca); Random Run Order, Randomization and Inadvertent Split-Plots in Response Surface Experiments (J Ganju & J M Lucas); Statistical Inference for Response Surface Optima (D K J Lin & J J Peterson); A Search Method for the Exploration of New Regions in Robust Parameter Design (G Mer-Quesada & E del Castillo); Response Surface Approaches to Robust Parameter Design (T J Robinson & S S Wulff); Response Surface Methods and Their Application in the Treatment of Cancer with Drug Combinations: Some Reflections (K S Dawson et al.); Generalized Linear Models and Response Transformation (A C Atkinson); GLM Designs: The Dependence on Unknown Parameters Dilemma (A I Khuri & S Mukhopadhyay); Design for a Trinomial Response to Dose (S K Fan & K Chaloner); Evaluating the Performance of Non-Standard Designs: The San Cristobal Design (L M Haines); 50 Years of Mixture Experiment Research: 1955OCo2004 (G F Piepel); Graphical Methods for Comparing Response Surface Designs for Experiments with Mixture Components (H B Goldfarb & D C Montgomery); Graphical Methods for Assessing the Prediction Capability of Response Surface Designs (J J Borkowski); Using Fraction of Design Space Plots for Informative Comparisons between Designs (C M Anderson-Cook & A Ozol-Godfrey); Concepts of Slope-Rotatability for Second Order Response Surface Designs (S H Park); Design of Experiments for Estimating Differences between Responses and Slopes of the Response (S Huda). Readership: Researchers in academia and industry interested in response surface methodology and its applications; engineers interested in improving quality and productivity in industry."
Author:
Publisher: John Wiley & Sons
ISBN: 111963542X
Category :
Languages : en
Pages : 690
Book Description
Publisher: John Wiley & Sons
ISBN: 111963542X
Category :
Languages : en
Pages : 690
Book Description
Design and Analysis of Experiments
Author: Douglas C. Montgomery
Publisher: Wiley
ISBN: 9780471661597
Category : Experimental design
Languages : en
Pages : 0
Book Description
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Publisher: Wiley
ISBN: 9780471661597
Category : Experimental design
Languages : en
Pages : 0
Book Description
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Experimental Design for Formulation
Author: Wendell F. Smith
Publisher: SIAM
ISBN: 9780898718393
Category : Science
Languages : en
Pages : 386
Book Description
Many products, such as foods, personal-care products, beverages, and cleaning agents, are made by mixing ingredients together. This book describes a systematic methodology for formulating such products so that they perform according to one's goals, providing scientists and engineers with a fast track to the implementation of the methodology. Experimental Design for Formulation contains examples from a wide variety of fields and includes a discussion of how to design experiments for a mixture setting and how to fit and interpret models in a mixture setting. It also introduces process variables, the combining of mixture and nonmixture variables in a designed experiment, and the concept of collinearity and the possible problems that can result from its presence. Experimental Design for Formulation is a useful manual for the formulator and can also be used by a resident statistician to teach an in-house short course. Statistical proofs are largely absent, and the formulas that are presented are included to explain how the various software packages carry out the analysis. Many examples are given of output from statistical software packages, and the proper interpretation of computer output is emphasized. Other topics presented include a discussion of an effect in a mixture setting, the presentation of elementary optimization methods, and multiple-response optimization wherein one seeks to optimize more than one response.
Publisher: SIAM
ISBN: 9780898718393
Category : Science
Languages : en
Pages : 386
Book Description
Many products, such as foods, personal-care products, beverages, and cleaning agents, are made by mixing ingredients together. This book describes a systematic methodology for formulating such products so that they perform according to one's goals, providing scientists and engineers with a fast track to the implementation of the methodology. Experimental Design for Formulation contains examples from a wide variety of fields and includes a discussion of how to design experiments for a mixture setting and how to fit and interpret models in a mixture setting. It also introduces process variables, the combining of mixture and nonmixture variables in a designed experiment, and the concept of collinearity and the possible problems that can result from its presence. Experimental Design for Formulation is a useful manual for the formulator and can also be used by a resident statistician to teach an in-house short course. Statistical proofs are largely absent, and the formulas that are presented are included to explain how the various software packages carry out the analysis. Many examples are given of output from statistical software packages, and the proper interpretation of computer output is emphasized. Other topics presented include a discussion of an effect in a mixture setting, the presentation of elementary optimization methods, and multiple-response optimization wherein one seeks to optimize more than one response.