Author: Andreas Kriegl
Publisher: American Mathematical Society
ISBN: 1470478935
Category : Mathematics
Languages : en
Pages : 631
Book Description
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
The Convenient Setting of Global Analysis
Author: Andreas Kriegl
Publisher: American Mathematical Society
ISBN: 1470478935
Category : Mathematics
Languages : en
Pages : 631
Book Description
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
Publisher: American Mathematical Society
ISBN: 1470478935
Category : Mathematics
Languages : en
Pages : 631
Book Description
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
The Convenient Setting of Global Analysis
Author: Andreas Kriegl
Publisher: American Mathematical Soc.
ISBN: 0821807803
Category : Mathematics
Languages : en
Pages : 631
Book Description
For graduate students and research mathematicians interested in global analysis and the analysis of manifolds, lays the foundations for a differential calculus in infinite dimensions and discusses applications in infinite-dimension differential geometry and global analysis not involving Sobolev completions and fixed-point theory. Shows how the notion of smoothness as mapping smooth curves to smooth curves coincides with all known reasonable concepts up to Frechet spaces. Then develops a calculus of holomorphic mappings, and another of real analytical mapping. Emphasizes regular infinite dimensional Lie groups. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821807803
Category : Mathematics
Languages : en
Pages : 631
Book Description
For graduate students and research mathematicians interested in global analysis and the analysis of manifolds, lays the foundations for a differential calculus in infinite dimensions and discusses applications in infinite-dimension differential geometry and global analysis not involving Sobolev completions and fixed-point theory. Shows how the notion of smoothness as mapping smooth curves to smooth curves coincides with all known reasonable concepts up to Frechet spaces. Then develops a calculus of holomorphic mappings, and another of real analytical mapping. Emphasizes regular infinite dimensional Lie groups. Annotation copyrighted by Book News, Inc., Portland, OR
Handbook of Global Analysis
Author: Demeter Krupka
Publisher: Elsevier
ISBN: 0080556736
Category : Mathematics
Languages : en
Pages : 1243
Book Description
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents
Publisher: Elsevier
ISBN: 0080556736
Category : Mathematics
Languages : en
Pages : 1243
Book Description
This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents
Global Calculus
Author: S. Ramanan
Publisher: American Mathematical Soc.
ISBN: 0821837028
Category : Mathematics
Languages : en
Pages : 330
Book Description
The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.
Publisher: American Mathematical Soc.
ISBN: 0821837028
Category : Mathematics
Languages : en
Pages : 330
Book Description
The power that analysis, topology and algebra bring to geometry has revolutionised the way geometers and physicists look at conceptual problems. Some of the key ingredients in this interplay are sheaves, cohomology, Lie groups, connections and differential operators. In Global Calculus, the appropriate formalism for these topics is laid out with numerous examples and applications by one of the experts in differential and algebraic geometry. Ramanan has chosen an uncommon but natural path through the subject. In this almost completely self-contained account, these topics are developed from scratch. The basics of Fourier transforms, Sobolev theory and interior regularity are proved at the same time as symbol calculus, culminating in beautiful results in global analysis, real and complex. Many new perspectives on traditional and modern questions of differential analysis and geometry are the hallmarks of the book. The book is suitable for a first year graduate course on Global Analysis.
Infinite Dimensional Lie Groups In Geometry And Representation Theory
Author: Augustin Banyaga
Publisher: World Scientific
ISBN: 9814488143
Category : Science
Languages : en
Pages : 174
Book Description
This book constitutes the proceedings of the 2000 Howard conference on “Infinite Dimensional Lie Groups in Geometry and Representation Theory”. It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
Publisher: World Scientific
ISBN: 9814488143
Category : Science
Languages : en
Pages : 174
Book Description
This book constitutes the proceedings of the 2000 Howard conference on “Infinite Dimensional Lie Groups in Geometry and Representation Theory”. It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
Geometric Theory of Generalized Functions with Applications to General Relativity
Author: M. Grosser
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517
Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517
Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Homeomorphisms in Analysis
Author: Casper Goffman
Publisher: American Mathematical Soc.
ISBN: 0821806149
Category : Mathematics
Languages : en
Pages : 235
Book Description
This work features the interplay of two main branches of mathematics: topology and real analysis. The material of the book is largely contained in the research publications of the authors and their students from the past 50 years. Parts of analysis are touched upon in a unique way, for example, Lebesgue measurability, Baire classes of functions, differentiability, C ]n and C ]*w functions, the Blumberg theorem, bounded variation in the sense of Cesari, and various theorems on Fourier series and generalized bounded variation of a function.
Publisher: American Mathematical Soc.
ISBN: 0821806149
Category : Mathematics
Languages : en
Pages : 235
Book Description
This work features the interplay of two main branches of mathematics: topology and real analysis. The material of the book is largely contained in the research publications of the authors and their students from the past 50 years. Parts of analysis are touched upon in a unique way, for example, Lebesgue measurability, Baire classes of functions, differentiability, C ]n and C ]*w functions, the Blumberg theorem, bounded variation in the sense of Cesari, and various theorems on Fourier series and generalized bounded variation of a function.
Geometric and Algebraic Topological Methods in Quantum Mechanics
Author: G. Giachetta
Publisher: World Scientific
ISBN: 9812701265
Category : Science
Languages : en
Pages : 715
Book Description
In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry''s geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.
Publisher: World Scientific
ISBN: 9812701265
Category : Science
Languages : en
Pages : 715
Book Description
In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry''s geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.
Morita Equivalence and Continuous-Trace $C^*$-Algebras
Author: Iain Raeburn
Publisher: American Mathematical Soc.
ISBN: 0821808605
Category : Mathematics
Languages : en
Pages : 345
Book Description
A modern treatment of this complex mathematical topic for students beginning research in operator algebras as well as mathematical physicists. Topics include the algebra of compact operators, sheaves, cohomology, the Brauer group and group actions, and the imprimivity theorem. The authors assume a knowledge of C*-algebras, the Gelfand-Naimark Theorem, continuous functional calculus, positivity, and the GNS- construction. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821808605
Category : Mathematics
Languages : en
Pages : 345
Book Description
A modern treatment of this complex mathematical topic for students beginning research in operator algebras as well as mathematical physicists. Topics include the algebra of compact operators, sheaves, cohomology, the Brauer group and group actions, and the imprimivity theorem. The authors assume a knowledge of C*-algebras, the Gelfand-Naimark Theorem, continuous functional calculus, positivity, and the GNS- construction. Annotation copyrighted by Book News, Inc., Portland, OR
Number Theoretic Density and Logical Limit Laws
Author: Stanley Burris
Publisher: American Mathematical Soc.
ISBN: 0821826662
Category : Mathematics
Languages : en
Pages : 313
Book Description
This book shows how a study of generating series (power series in the additive case and Dirichlet series in the multiplicative case), combined with structure theorems for the finite models of a sentence, lead to general and powerful results on limit laws, including 0 - 1 laws. The book is unique in its approach to giving a combined treatment of topics from additive as well as from multiplicative number theory, in the setting of abstract number systems, emphasizing the remarkable parallels in the two subjects. Much evidence is collected to support the thesis that local results in additive systems lift to global results in multiplicative systems. All necessary material is given to understand thoroughly the method of Compton for proving logical limit laws, including a full treatment of Ehrenfeucht-Fraissé games, the Feferman-Vaught Theorem, and Skolem's quantifier elimination for finite Boolean algebras. An intriguing aspect of the book is to see so many interesting tools from elementary mathematics pull together to answer the question: What is the probability that a randomly chosen structure has a given property? Prerequisites are undergraduate analysis and some exposure to abstract systems.
Publisher: American Mathematical Soc.
ISBN: 0821826662
Category : Mathematics
Languages : en
Pages : 313
Book Description
This book shows how a study of generating series (power series in the additive case and Dirichlet series in the multiplicative case), combined with structure theorems for the finite models of a sentence, lead to general and powerful results on limit laws, including 0 - 1 laws. The book is unique in its approach to giving a combined treatment of topics from additive as well as from multiplicative number theory, in the setting of abstract number systems, emphasizing the remarkable parallels in the two subjects. Much evidence is collected to support the thesis that local results in additive systems lift to global results in multiplicative systems. All necessary material is given to understand thoroughly the method of Compton for proving logical limit laws, including a full treatment of Ehrenfeucht-Fraissé games, the Feferman-Vaught Theorem, and Skolem's quantifier elimination for finite Boolean algebras. An intriguing aspect of the book is to see so many interesting tools from elementary mathematics pull together to answer the question: What is the probability that a randomly chosen structure has a given property? Prerequisites are undergraduate analysis and some exposure to abstract systems.