Author: Philip J. Davis
Publisher: Springer Science & Business Media
ISBN: 1461242800
Category : Science
Languages : en
Pages : 118
Book Description
The Companion Guide to the Mathematical Experience
Author: Philip J. Davis
Publisher: Springer Science & Business Media
ISBN: 1461242800
Category : Science
Languages : en
Pages : 118
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461242800
Category : Science
Languages : en
Pages : 118
Book Description
The Mathematical Experience, Study Edition
Author: Philip Davis
Publisher: Springer Science & Business Media
ISBN: 0817682953
Category : Mathematics
Languages : en
Pages : 522
Book Description
Winner of the 1983 National Book Award! "...a perfectly marvelous book about the Queen of Sciences, from which one will get a real feeling for what mathematicians do and who they are. The exposition is clear and full of wit and humor..." - The New Yorker (1983 National Book Award edition) Mathematics has been a human activity for thousands of years. Yet only a few people from the vast population of users are professional mathematicians, who create, teach, foster, and apply it in a variety of situations. The authors of this book believe that it should be possible for these professional mathematicians to explain to non-professionals what they do, what they say they are doing, and why the world should support them at it. They also believe that mathematics should be taught to non-mathematics majors in such a way as to instill an appreciation of the power and beauty of mathematics. Many people from around the world have told the authors that they have done precisely that with the first edition and they have encouraged publication of this revised edition complete with exercises for helping students to demonstrate their understanding. This edition of the book should find a new generation of general readers and students who would like to know what mathematics is all about. It will prove invaluable as a course text for a general mathematics appreciation course, one in which the student can combine an appreciation for the esthetics with some satisfying and revealing applications. The text is ideal for 1) a GE course for Liberal Arts students 2) a Capstone course for perspective teachers 3) a writing course for mathematics teachers. A wealth of customizable online course materials for the book can be obtained from Elena Anne Marchisotto ([email protected]) upon request.
Publisher: Springer Science & Business Media
ISBN: 0817682953
Category : Mathematics
Languages : en
Pages : 522
Book Description
Winner of the 1983 National Book Award! "...a perfectly marvelous book about the Queen of Sciences, from which one will get a real feeling for what mathematicians do and who they are. The exposition is clear and full of wit and humor..." - The New Yorker (1983 National Book Award edition) Mathematics has been a human activity for thousands of years. Yet only a few people from the vast population of users are professional mathematicians, who create, teach, foster, and apply it in a variety of situations. The authors of this book believe that it should be possible for these professional mathematicians to explain to non-professionals what they do, what they say they are doing, and why the world should support them at it. They also believe that mathematics should be taught to non-mathematics majors in such a way as to instill an appreciation of the power and beauty of mathematics. Many people from around the world have told the authors that they have done precisely that with the first edition and they have encouraged publication of this revised edition complete with exercises for helping students to demonstrate their understanding. This edition of the book should find a new generation of general readers and students who would like to know what mathematics is all about. It will prove invaluable as a course text for a general mathematics appreciation course, one in which the student can combine an appreciation for the esthetics with some satisfying and revealing applications. The text is ideal for 1) a GE course for Liberal Arts students 2) a Capstone course for perspective teachers 3) a writing course for mathematics teachers. A wealth of customizable online course materials for the book can be obtained from Elena Anne Marchisotto ([email protected]) upon request.
The Companion Guide to the Mathematical Experience
Author: Philip J. Davis
Publisher: Birkhäuser
ISBN: 9781461242819
Category : Science
Languages : en
Pages : 120
Book Description
Publisher: Birkhäuser
ISBN: 9781461242819
Category : Science
Languages : en
Pages : 120
Book Description
The Mathematics Lover's Companion
Author: Edward R. Scheinerman
Publisher: Yale University Press
ISBN: 0300223005
Category : Mathematics
Languages : en
Pages : 295
Book Description
Twenty-three mathematical masterpieces for exploration and enlightenment How can a shape have more than one dimension but fewer than two? What is the best way to elect public officials when more than two candidates are vying for the office? Is it possible for a highly accurate medical test to give mostly incorrect results? Can you tile your floor with regular pentagons? How can you use only the first digit of sales numbers to determine if your accountant is lying? Can mathematics give insights into free will? Edward Scheinerman, an accomplished mathematician and enthusiastic educator, answers all these questions and more in this book, a collection of mathematical masterworks. In bite-sized chapters that require only high school algebra, he invites readers to try their hands at solving mathematical puzzles and provides an engaging and friendly tour of numbers, shapes, and uncertainty. The result is an unforgettable introduction to the fundamentals and pleasures of thinking mathematically.
Publisher: Yale University Press
ISBN: 0300223005
Category : Mathematics
Languages : en
Pages : 295
Book Description
Twenty-three mathematical masterpieces for exploration and enlightenment How can a shape have more than one dimension but fewer than two? What is the best way to elect public officials when more than two candidates are vying for the office? Is it possible for a highly accurate medical test to give mostly incorrect results? Can you tile your floor with regular pentagons? How can you use only the first digit of sales numbers to determine if your accountant is lying? Can mathematics give insights into free will? Edward Scheinerman, an accomplished mathematician and enthusiastic educator, answers all these questions and more in this book, a collection of mathematical masterworks. In bite-sized chapters that require only high school algebra, he invites readers to try their hands at solving mathematical puzzles and provides an engaging and friendly tour of numbers, shapes, and uncertainty. The result is an unforgettable introduction to the fundamentals and pleasures of thinking mathematically.
The Math Pact, Middle School
Author: Sarah B. Bush
Publisher: Corwin
ISBN: 154439957X
Category : Education
Languages : en
Pages : 209
Book Description
A schoolwide solution for students’ mathematics success! Do you sometimes start to teach a mathematics concept and feel like you’re staring at a sea of bewildered faces? What happens when you discover students previously learned a calculation trick or a mnemonic that has muddied their long-term understanding? When "rules" seem to change from year to year, teacher to teacher, or school to school, mathematics can seem like a disconnected mystery for students. Clear up the confusion with a Mathematics Whole-School Agreement! Expanded from the highly popular "Rules that Expire" series of NCTM articles, this essential guide leads educators through the collaborative step-by-step process of establishing a coherent and consistent learner-centered and equitable approach to mathematics instruction. Through this work, you will identify, streamline, and become passionate about using clear and consistent mathematical language, notations, representations, rules, and generalizations within and across classrooms and grades. Importantly, you’ll learn to avoid "rules that expire"—tricks that may seem to help students in one grade but hurt in the long run. Features of this book include · Abundant grade-specific examples · Effective working plans for sustainability · Barrier-busting tips, to-dos, and try-it-outs · Practical templates and checklists · PLC prompts and discussion points When teachers unite across grades, students hit the ground running every year. Take the next step together as a team and help all your students build on existing understanding to find new success and most importantly, love learning and doing mathematics!
Publisher: Corwin
ISBN: 154439957X
Category : Education
Languages : en
Pages : 209
Book Description
A schoolwide solution for students’ mathematics success! Do you sometimes start to teach a mathematics concept and feel like you’re staring at a sea of bewildered faces? What happens when you discover students previously learned a calculation trick or a mnemonic that has muddied their long-term understanding? When "rules" seem to change from year to year, teacher to teacher, or school to school, mathematics can seem like a disconnected mystery for students. Clear up the confusion with a Mathematics Whole-School Agreement! Expanded from the highly popular "Rules that Expire" series of NCTM articles, this essential guide leads educators through the collaborative step-by-step process of establishing a coherent and consistent learner-centered and equitable approach to mathematics instruction. Through this work, you will identify, streamline, and become passionate about using clear and consistent mathematical language, notations, representations, rules, and generalizations within and across classrooms and grades. Importantly, you’ll learn to avoid "rules that expire"—tricks that may seem to help students in one grade but hurt in the long run. Features of this book include · Abundant grade-specific examples · Effective working plans for sustainability · Barrier-busting tips, to-dos, and try-it-outs · Practical templates and checklists · PLC prompts and discussion points When teachers unite across grades, students hit the ground running every year. Take the next step together as a team and help all your students build on existing understanding to find new success and most importantly, love learning and doing mathematics!
Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 208
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 208
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
The Common Core Mathematics Companion: The Standards Decoded, High School
Author: Frederick L. Dillon
Publisher: Corwin Press
ISBN: 1506395635
Category : Education
Languages : en
Pages : 505
Book Description
Your User’s Guide to the Mathematics Standards When it comes to mathematics, standards aligned is achievement aligned... In the short time since The Common Core Mathematics Companions for grades K–2, 3–5 and 6–8 burst on the scene, they have been lauded as the best resources for making critical mathematics ideas easy to teach. With this brand-new volume, high school mathematics success is at your fingertips. Page by page, the authors lay out the pieces of an in-depth explanation, including The mathematical progression of each conceptual category, starting with modeling as a unifying theme, and moving through number & quantity, algebra, functions, geometry, and statistics and probability, building from the 8th grade standards The mathematics embedded in each conceptual category for a deeper understanding of the content How standards connect within and across domains, and to previous grade standards, so teachers can better appreciate how they relate How standards connect with the standards for mathematical practice, with a focus on modeling as a unifying theme Example tasks, progressions of tasks, and descriptions of what teachers and students should be doing to foster deep learning The Common Core Mathematics Companion: The Standards Decoded, High School has what every high school teacher needs to provide students with the foundation for the concepts and skills they will be expected to know .
Publisher: Corwin Press
ISBN: 1506395635
Category : Education
Languages : en
Pages : 505
Book Description
Your User’s Guide to the Mathematics Standards When it comes to mathematics, standards aligned is achievement aligned... In the short time since The Common Core Mathematics Companions for grades K–2, 3–5 and 6–8 burst on the scene, they have been lauded as the best resources for making critical mathematics ideas easy to teach. With this brand-new volume, high school mathematics success is at your fingertips. Page by page, the authors lay out the pieces of an in-depth explanation, including The mathematical progression of each conceptual category, starting with modeling as a unifying theme, and moving through number & quantity, algebra, functions, geometry, and statistics and probability, building from the 8th grade standards The mathematics embedded in each conceptual category for a deeper understanding of the content How standards connect within and across domains, and to previous grade standards, so teachers can better appreciate how they relate How standards connect with the standards for mathematical practice, with a focus on modeling as a unifying theme Example tasks, progressions of tasks, and descriptions of what teachers and students should be doing to foster deep learning The Common Core Mathematics Companion: The Standards Decoded, High School has what every high school teacher needs to provide students with the foundation for the concepts and skills they will be expected to know .
Mathematics
Author: Timothy Gowers
Publisher: OUP Oxford
ISBN: 0191579416
Category : Mathematics
Languages : en
Pages : 187
Book Description
The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191579416
Category : Mathematics
Languages : en
Pages : 187
Book Description
The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Guide to Essential Math
Author: Sy M. Blinder
Publisher: Newnes
ISBN: 0124071589
Category : Mathematics
Languages : en
Pages : 285
Book Description
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables
Publisher: Newnes
ISBN: 0124071589
Category : Mathematics
Languages : en
Pages : 285
Book Description
This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables
The Companion Guide to The Mathematical Experience, Study Edition
Author: Philip J. Davis
Publisher: Birkhauser
ISBN: 9783764338497
Category : Mathematics
Languages : en
Pages : 120
Book Description
The Companion Guide to The Mathematical Experience, Study Edition has been created as a teaching tool, not only for the teacher and the student, but also for those students who are potential teachers. Its major purpose is to enhance the value of The Mathematical Experience, Study Edition as a textbook for teachers and to provide content and method for prospective teachers. Thus, unlike instructional guides that are available to the adopting teacher only, this Companion is available to the student or the teacher who wants independently to develop further skills in teaching mathematics. An additional value is that it provides suggested topics to explore that are not in the text but that coordinate beautifully to the text. The inclusion of these topics makes The Companion Guide a flexible teaching tool, adaptable to a variety of courses and useable with many individual selections of other course materials.
Publisher: Birkhauser
ISBN: 9783764338497
Category : Mathematics
Languages : en
Pages : 120
Book Description
The Companion Guide to The Mathematical Experience, Study Edition has been created as a teaching tool, not only for the teacher and the student, but also for those students who are potential teachers. Its major purpose is to enhance the value of The Mathematical Experience, Study Edition as a textbook for teachers and to provide content and method for prospective teachers. Thus, unlike instructional guides that are available to the adopting teacher only, this Companion is available to the student or the teacher who wants independently to develop further skills in teaching mathematics. An additional value is that it provides suggested topics to explore that are not in the text but that coordinate beautifully to the text. The inclusion of these topics makes The Companion Guide a flexible teaching tool, adaptable to a variety of courses and useable with many individual selections of other course materials.