The Case for Fast Ignition as an IFE Concept Exploration Program

The Case for Fast Ignition as an IFE Concept Exploration Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The fast ignition (FI) concept is a variant of inertial fusion in which the compression and ignition steps are separated. Calculations suggest this would allow a substantial improvement in target gain, and could form the basis of a very attractive power plant. Transporting the energy to ignite a target involves the physics of light-driven relativistic plasmas; a subject which is not well understood. A concept exploration effort to understand the energy transport physics, and also to clarify the merits of a FI IFE power plant could justify a proof-of-principle program on the National Ignition Facility.

The Case for Fast Ignition as an IFE Concept Exploration Program

The Case for Fast Ignition as an IFE Concept Exploration Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The fast ignition (FI) concept is a variant of inertial fusion in which the compression and ignition steps are separated. Calculations suggest this would allow a substantial improvement in target gain, and could form the basis of a very attractive power plant. Transporting the energy to ignite a target involves the physics of light-driven relativistic plasmas; a subject which is not well understood. A concept exploration effort to understand the energy transport physics, and also to clarify the merits of a FI IFE power plant could justify a proof-of-principle program on the National Ignition Facility.

Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program."

Final Project Report Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional "central hot spot" (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10's of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly--only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the components--resources, facilities, and personnel--necessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking adv ...

A Concept Exploration Program in Fast Ignition Inertial Fusion -- Final Report

A Concept Exploration Program in Fast Ignition Inertial Fusion -- Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities - at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

Laser Thermonuclear Fusion : Research Review, (1984-2008), on Generation of Suprathermal Particles, Laser Radiation Harmonics, and Quasistationary Magnetic Fields. (The Stefan University Graduate Courses,ISSN: 1543-558X)

Laser Thermonuclear Fusion : Research Review, (1984-2008), on Generation of Suprathermal Particles, Laser Radiation Harmonics, and Quasistationary Magnetic Fields. (The Stefan University Graduate Courses,ISSN: 1543-558X) PDF Author: V.Alexander STEFAN
Publisher: Stefan University Press
ISBN: 1889545899
Category :
Languages : en
Pages : 245

Get Book Here

Book Description


Advanced Concept Exploration for Fast Ignition Science Program, Final Report

Advanced Concept Exploration for Fast Ignition Science Program, Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


A Concept Exploration Program in Fast Ignition Inertial Fusion {u2014} Final Report

A Concept Exploration Program in Fast Ignition Inertial Fusion {u2014} Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant ($̃850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science and Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

Inertial Confinement Fusion Driven Thermonuclear Energy

Inertial Confinement Fusion Driven Thermonuclear Energy PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319509071
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required.

Laser-plasma Interaction Generated Proton Isochoric Heating and Focusing

Laser-plasma Interaction Generated Proton Isochoric Heating and Focusing PDF Author: Bingbing Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description


Fusion Science and Technology

Fusion Science and Technology PDF Author:
Publisher:
ISBN:
Category : Fusion reactors
Languages : en
Pages : 890

Get Book Here

Book Description


Titanium K-alpha X-ray Imaging Radiography of Imploding Microshells Using a Spherically Bent Crystal

Titanium K-alpha X-ray Imaging Radiography of Imploding Microshells Using a Spherically Bent Crystal PDF Author: James Anthony King
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Get Book Here

Book Description