The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations PDF Author: Shuhui Wu
Publisher: GRIN Verlag
ISBN: 3346600963
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Doctoral Thesis / Dissertation from the year 2009 in the subject Mathematics - Applied Mathematics, London Metropolitan University, language: English, abstract: This thesis deals with the asymptotic and oscillatory behaviour of the solutions of certain differential and difference equations. It mainly consists of three parts. The first part is to study the asymptotic behaviour of certain differential equations. The second part is to look for oscillatory criteria for certain nonlinear neutral differential equations. And the third part is to establish new criteria for a class of nonlinear neutral difference equations of any order with continuous variable and another type of higher even order nonlinear neutral difference equations to be oscillatory. A functional differential equation is a differential equation involving the values of the unknown functions at present, as well as at past or future time. The word “time” here stands for the independent variable. In the thesis, the concept of a functional differential equation is confined to ordinary differential equations, although it suits partial ones as well. Functional differential equations can be classified into four types according to their deviations: retarded, advanced, neutral and mixed. A neutral equation is one in which derivative of functionals of the past history and the present state are involved, but no future states occur in the equation. The order of a differential equation is the order of the highest derivative of the unknown function. A difference equation is a specific type of recurrence relation, which is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms. On the other hand, difference equations can be thought of as the discrete analogue of the corresponding differential equations. By analogy with differential equations, difference equations also can be classified into four types: delay, advanced, neutral, and mixed. The order of a difference equation is the difference between the largest and the smallest values of the integer variable explicitly involved in the difference equation.

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations

The Asymptotic and Oscillatory Behaviour of Difference and Differential Equations PDF Author: Shuhui Wu
Publisher: GRIN Verlag
ISBN: 3346600963
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Doctoral Thesis / Dissertation from the year 2009 in the subject Mathematics - Applied Mathematics, London Metropolitan University, language: English, abstract: This thesis deals with the asymptotic and oscillatory behaviour of the solutions of certain differential and difference equations. It mainly consists of three parts. The first part is to study the asymptotic behaviour of certain differential equations. The second part is to look for oscillatory criteria for certain nonlinear neutral differential equations. And the third part is to establish new criteria for a class of nonlinear neutral difference equations of any order with continuous variable and another type of higher even order nonlinear neutral difference equations to be oscillatory. A functional differential equation is a differential equation involving the values of the unknown functions at present, as well as at past or future time. The word “time” here stands for the independent variable. In the thesis, the concept of a functional differential equation is confined to ordinary differential equations, although it suits partial ones as well. Functional differential equations can be classified into four types according to their deviations: retarded, advanced, neutral and mixed. A neutral equation is one in which derivative of functionals of the past history and the present state are involved, but no future states occur in the equation. The order of a differential equation is the order of the highest derivative of the unknown function. A difference equation is a specific type of recurrence relation, which is an equation that defines a sequence recursively: each term of the sequence is defined as a function of the preceding terms. On the other hand, difference equations can be thought of as the discrete analogue of the corresponding differential equations. By analogy with differential equations, difference equations also can be classified into four types: delay, advanced, neutral, and mixed. The order of a difference equation is the difference between the largest and the smallest values of the integer variable explicitly involved in the difference equation.

Oscillation Theory for Difference and Functional Differential Equations

Oscillation Theory for Difference and Functional Differential Equations PDF Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9401594015
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.

Asymptotic Behavior of Solutions of Differential-Difference Equations

Asymptotic Behavior of Solutions of Differential-Difference Equations PDF Author: Richard Bellman
Publisher: American Mathematical Soc.
ISBN: 0821812351
Category : Difference equations
Languages : en
Pages : 99

Get Book Here

Book Description


Asymptotic Analysis of Differential Equations

Asymptotic Analysis of Differential Equations PDF Author: R. B. White
Publisher: World Scientific
ISBN: 1848166087
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
"This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations PDF Author: Lamberto Cesari
Publisher: Springer Science & Business Media
ISBN: 3662001055
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
This second edition, which has become necessary within so short a time, presents no major changes. However new results in the line of work of the author and of J. K. HaIe have made it advisable to rewrite seetion (8.5). Also, some references to most recent work have been added. LAMBERTO CESARI University of Michigan June 1962 Ann Arbor Preface to the First Edition In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matie controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields.

Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations

Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations PDF Author: Leonid Berezansky
Publisher: CRC Press
ISBN: 1000048551
Category : Mathematics
Languages : en
Pages : 615

Get Book Here

Book Description
Asymptotic properties of solutions such as stability/ instability,oscillation/ nonoscillation, existence of solutions with specific asymptotics, maximum principles present a classical part in the theory of higher order functional differential equations. The use of these equations in applications is one of the main reasons for the developments in this field. The control in the mechanical processes leads to mathematical models with second order delay differential equations. Stability and stabilization of second order delay equations are one of the main goals of this book. The book is based on the authors’ results in the last decade. Features: Stability, oscillatory and asymptotic properties of solutions are studied in correlation with each other. The first systematic description of stability methods based on the Bohl-Perron theorem. Simple and explicit exponential stability tests. In this book, various types of functional differential equations are considered: second and higher orders delay differential equations with measurable coefficients and delays, integro-differential equations, neutral equations, and operator equations. Oscillation/nonoscillation, existence of unbounded solutions, instability, special asymptotic behavior, positivity, exponential stability and stabilization of functional differential equations are studied. New methods for the study of exponential stability are proposed. Noted among them inlcude the W-transform (right regularization), a priory estimation of solutions, maximum principles, differential and integral inequalities, matrix inequality method, and reduction to a system of equations. The book can be used by applied mathematicians and as a basis for a course on stability of functional differential equations for graduate students.

Oscillation Theory for Functional Differential Equations

Oscillation Theory for Functional Differential Equations PDF Author: Lynn Erbe
Publisher: CRC Press
ISBN: 9780824795986
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.

Asymptotic Integration of Differential and Difference Equations

Asymptotic Integration of Differential and Difference Equations PDF Author: Sigrun Bodine
Publisher: Springer
ISBN: 331918248X
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.

Regular Variation and Differential Equations

Regular Variation and Differential Equations PDF Author: Vojislav Maric
Publisher: Springer Science & Business Media
ISBN: 9783540671602
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '99, held in Beijing, China, in April 1999. The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization; causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies.

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations

Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations PDF Author: Ivan Kiguradze
Publisher: Springer Science & Business Media
ISBN: 9401118086
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
This volume provides a comprehensive review of the developments which have taken place during the last thirty years concerning the asymptotic properties of solutions of nonautonomous ordinary differential equations. The conditions of oscillation of solutions are established, and some general theorems on the classification of equations according to their oscillatory properties are proved. In addition, the conditions are found under which nonlinear equations do not have singular, proper, oscillatory and monotone solutions. The book has five chapters: Chapter I deals with linear differential equations; Chapter II with quasilinear equations; Chapter III with general nonlinear differential equations; and Chapter IV and V deal, respectively, with higher-order and second-order differential equations of the Emden-Fowler type. Each section contains problems, including some which presently remain unsolved. The volume concludes with an extensive list of references. For researchers and graduate students interested in the qualitative theory of differential equations.