Author: G. R. Reddy
Publisher: Springer
ISBN: 9811331766
Category : Science
Languages : en
Pages : 558
Book Description
This book focuses on the seismic design of Structures, Piping Systems and Components (SSC). It explains the basic mechanisms of earthquakes, generation of design basis ground motion, and fundamentals of structural dynamics; further, it delves into geotechnical aspects related to the earthquake design, analysis of multi degree-of-freedom systems, and seismic design of RC structures and steel structures. The book discusses the design of components and piping systems located at the ground level as well as at different floor levels of the structure. It also covers anchorage design of component and piping system, and provides an introduction to retrofitting, seismic response control including seismic base isolation, and testing of SSCs. The book is written in an easy-to-understand way, with review questions, case studies and detailed examples on each topic. This educational approach makes the book useful in both classrooms and professional training courses for students, researchers, and professionals alike.
Textbook of Seismic Design
Author: G. R. Reddy
Publisher: Springer
ISBN: 9811331766
Category : Science
Languages : en
Pages : 558
Book Description
This book focuses on the seismic design of Structures, Piping Systems and Components (SSC). It explains the basic mechanisms of earthquakes, generation of design basis ground motion, and fundamentals of structural dynamics; further, it delves into geotechnical aspects related to the earthquake design, analysis of multi degree-of-freedom systems, and seismic design of RC structures and steel structures. The book discusses the design of components and piping systems located at the ground level as well as at different floor levels of the structure. It also covers anchorage design of component and piping system, and provides an introduction to retrofitting, seismic response control including seismic base isolation, and testing of SSCs. The book is written in an easy-to-understand way, with review questions, case studies and detailed examples on each topic. This educational approach makes the book useful in both classrooms and professional training courses for students, researchers, and professionals alike.
Publisher: Springer
ISBN: 9811331766
Category : Science
Languages : en
Pages : 558
Book Description
This book focuses on the seismic design of Structures, Piping Systems and Components (SSC). It explains the basic mechanisms of earthquakes, generation of design basis ground motion, and fundamentals of structural dynamics; further, it delves into geotechnical aspects related to the earthquake design, analysis of multi degree-of-freedom systems, and seismic design of RC structures and steel structures. The book discusses the design of components and piping systems located at the ground level as well as at different floor levels of the structure. It also covers anchorage design of component and piping system, and provides an introduction to retrofitting, seismic response control including seismic base isolation, and testing of SSCs. The book is written in an easy-to-understand way, with review questions, case studies and detailed examples on each topic. This educational approach makes the book useful in both classrooms and professional training courses for students, researchers, and professionals alike.
Seismic Design of Building Structures
Author: Michael R. Lindeburg
Publisher: Professional Publications Incorporated
ISBN:
Category : Education
Languages : en
Pages : 194
Book Description
- Solid review of seismic design exam topics- More than 100 practice problems- Includes step-by-step solutions Copyright © Libri GmbH. All rights reserved.
Publisher: Professional Publications Incorporated
ISBN:
Category : Education
Languages : en
Pages : 194
Book Description
- Solid review of seismic design exam topics- More than 100 practice problems- Includes step-by-step solutions Copyright © Libri GmbH. All rights reserved.
The Seismic Design Handbook
Author: Farzad Naeim
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Basic Earthquake Engineering
Author: Halûk Sucuoğlu
Publisher: Springer
ISBN: 3319010263
Category : Science
Languages : en
Pages : 297
Book Description
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
Publisher: Springer
ISBN: 3319010263
Category : Science
Languages : en
Pages : 297
Book Description
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
Seismic Design and Assessment of Bridges
Author: Andreas J. Kappos
Publisher: Springer Science & Business Media
ISBN: 9400739427
Category : Science
Languages : en
Pages : 232
Book Description
The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.
Publisher: Springer Science & Business Media
ISBN: 9400739427
Category : Science
Languages : en
Pages : 232
Book Description
The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.
Design of Seismic Isolated Structures
Author: Farzad Naeim
Publisher: John Wiley & Sons
ISBN: 9780471149217
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Complete, practical coverage of the evaluation, analysis, and design and code requirements of seismic isolation systems. Based on the concept of reducing seismic demand rather than increasing the earthquake resistance capacity of structures, seismic isolation is a surprisingly simple approach to earthquake protection. However, proper application of this technology within complex seismic design code requirements is both complicated and difficult. Design of Seismic Isolated Structures provides complete, up-to-date coverage of seismic isolation, complete with a systematic development of concepts in theory and practical application supplemented by numerical examples. This book helps design professionals navigate and understand the ideas and procedures involved in the analysis, design, and development of specifications for seismic isolated structures. It also provides a framework for satisfying code requirements while retaining the favorable cost-effective and damage control aspects of this new technology. An indispensable resource for practicing and aspiring engineers and architects, Design of Seismic Isolated Structures includes: * Isolation system components. * Complete coverage of code provisions for seismic isolation. * Mechanical characteristics and modeling of isolators. * Buckling and stability of elastomeric isolators. * Examples of seismic isolation designs. * Specifications for the design, manufacture, and testing of isolation devices.
Publisher: John Wiley & Sons
ISBN: 9780471149217
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Complete, practical coverage of the evaluation, analysis, and design and code requirements of seismic isolation systems. Based on the concept of reducing seismic demand rather than increasing the earthquake resistance capacity of structures, seismic isolation is a surprisingly simple approach to earthquake protection. However, proper application of this technology within complex seismic design code requirements is both complicated and difficult. Design of Seismic Isolated Structures provides complete, up-to-date coverage of seismic isolation, complete with a systematic development of concepts in theory and practical application supplemented by numerical examples. This book helps design professionals navigate and understand the ideas and procedures involved in the analysis, design, and development of specifications for seismic isolated structures. It also provides a framework for satisfying code requirements while retaining the favorable cost-effective and damage control aspects of this new technology. An indispensable resource for practicing and aspiring engineers and architects, Design of Seismic Isolated Structures includes: * Isolation system components. * Complete coverage of code provisions for seismic isolation. * Mechanical characteristics and modeling of isolators. * Buckling and stability of elastomeric isolators. * Examples of seismic isolation designs. * Specifications for the design, manufacture, and testing of isolation devices.
Seismic Design of Steel Structures
Author: Victor Gioncu
Publisher: CRC Press
ISBN: 0415242630
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
Providing real world applications for different structural types and seismic characteristics, Seismic Design of Steel Structures combines knowledge of seismic behavior of steel structures with the principles of earthquake engineering. This book focuses on seismic design, and concentrates specifically on seismic-resistant steel structures. Drawing on experience from the Northridge to the Tohoku earthquakes, it combines understanding of the seismic behavior of steel structures with the principles of earthquake engineering. The book focuses on the global as well as local behavior of steel structures and their effective seismic-resistant design. It recognises different types of earthquakes, takes into account the especial danger of fire after earthquake, and proposes new bracing and connecting systems for new seismic resistant steel structures, and also for upgrading existing reinforced concrete structures. Includes the results of the extensive use of the DUCTROCT M computer program, which is used for the evaluation of the seismic available ductility, both monotonic and cyclic, for different types of earthquakes Demonstrates good design principles by highlighting the behavior of seismic-resistant steel structures in many applications from around the world Provides a methodological approach, making a clear distinction between strong and low-to-moderate seismic regions This book serves as a reference for structural engineers involved in seismic design, as well as researchers and graduate students of seismic structural analysis and design.
Publisher: CRC Press
ISBN: 0415242630
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
Providing real world applications for different structural types and seismic characteristics, Seismic Design of Steel Structures combines knowledge of seismic behavior of steel structures with the principles of earthquake engineering. This book focuses on seismic design, and concentrates specifically on seismic-resistant steel structures. Drawing on experience from the Northridge to the Tohoku earthquakes, it combines understanding of the seismic behavior of steel structures with the principles of earthquake engineering. The book focuses on the global as well as local behavior of steel structures and their effective seismic-resistant design. It recognises different types of earthquakes, takes into account the especial danger of fire after earthquake, and proposes new bracing and connecting systems for new seismic resistant steel structures, and also for upgrading existing reinforced concrete structures. Includes the results of the extensive use of the DUCTROCT M computer program, which is used for the evaluation of the seismic available ductility, both monotonic and cyclic, for different types of earthquakes Demonstrates good design principles by highlighting the behavior of seismic-resistant steel structures in many applications from around the world Provides a methodological approach, making a clear distinction between strong and low-to-moderate seismic regions This book serves as a reference for structural engineers involved in seismic design, as well as researchers and graduate students of seismic structural analysis and design.
Seismic Analysis of Structures
Author: T. K. Datta
Publisher: John Wiley & Sons
ISBN: 047082462X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic
Publisher: John Wiley & Sons
ISBN: 047082462X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic
Geotechnical Earthquake Engineering
Author: Steven L. Kramer
Publisher: CRC Press
ISBN: 1040115942
Category : Technology & Engineering
Languages : en
Pages : 1061
Book Description
This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.
Publisher: CRC Press
ISBN: 1040115942
Category : Technology & Engineering
Languages : en
Pages : 1061
Book Description
This fully updated second edition provides an introduction to geotechnical earthquake engineering for first-year graduate students in geotechnical or earthquake engineering graduate programs with a level of detail that will also be useful for more advanced students as well as researchers and practitioners. It begins with an introduction to seismology and earthquake ground motions, then presents seismic hazard analysis and performance-based earthquake engineering (PBEE) principles. Dynamic soil properties pertinent to earthquake engineering applications are examined, both to facilitate understanding of soil response to seismic loads and to describe their practical measurement as part of site characterization. These topics are followed by site response and its analysis and soil–structure interaction. Ground failure in the form of soil liquefaction, cyclic softening, surface fault rupture, and seismically induced landslides are also addressed, and the book closes with a chapter on soil improvement and hazard mitigation. The first edition has been widely used around the world by geotechnical engineers as well as many seismologists and structural engineers. The main text of this book and the four appendices: • Cover fundamental concepts in applied seismology, geotechnical engineering, and structural dynamics. • Contain numerous references for further reading, allowing for detailed exploration of background or more advanced material. • Present worked example problems that illustrate the application of key concepts emphasized in the text. • Include chapter summaries that emphasize the most important points. • Present concepts of performance-based earthquake engineering with an emphasis on uncertainty and the types of probabilistic analyses needed to implement PBEE in practice. • Present a broad, interdisciplinary narrative, drawing from the fields of seismology, geotechnical engineering, and structural engineering to facilitate holistic understanding of how geotechnical earthquake engineering is applied in seismic hazard and risk analyses and in seismic design.
Approximate Methods in Structural Seismic Design
Author: A. Scarlat
Publisher: CRC Press
ISBN: 9780419187509
Category : Architecture
Languages : en
Pages : 296
Book Description
This book examines the recent developments in computerized structural analysis and finite element analysis to re-appraise existing approximate techniques and to define their scope and limits more accurately. The book proposes new techniques and provides many numerical examples and comparisons with 'accurate' methods.
Publisher: CRC Press
ISBN: 9780419187509
Category : Architecture
Languages : en
Pages : 296
Book Description
This book examines the recent developments in computerized structural analysis and finite element analysis to re-appraise existing approximate techniques and to define their scope and limits more accurately. The book proposes new techniques and provides many numerical examples and comparisons with 'accurate' methods.