Templates for the Solution of Linear Systems

Templates for the Solution of Linear Systems PDF Author: Richard Barrett
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141

Get Book Here

Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.

Templates for the Solution of Linear Systems

Templates for the Solution of Linear Systems PDF Author: Richard Barrett
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141

Get Book Here

Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.

Templates for the Solution of Algebraic Eigenvalue Problems

Templates for the Solution of Algebraic Eigenvalue Problems PDF Author: Zhaojun Bai
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430

Get Book Here

Book Description
Mathematics of Computing -- Numerical Analysis.

Templates for the Solution of Linear Systems

Templates for the Solution of Linear Systems PDF Author: Richard Barrett
Publisher: SIAM
ISBN: 0898713285
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
Mathematics of Computing -- Numerical Analysis.

Linear Algebra Via Exterior Products

Linear Algebra Via Exterior Products PDF Author: Sergei Winitzki
Publisher: Sergei Winitzki
ISBN: 140929496X
Category : Science
Languages : en
Pages : 286

Get Book Here

Book Description
This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.

Applied Numerical Linear Algebra

Applied Numerical Linear Algebra PDF Author: James W. Demmel
Publisher: SIAM
ISBN: 0898713897
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.

Matrix Iterative Analysis

Matrix Iterative Analysis PDF Author: Richard S Varga
Publisher: Springer Science & Business Media
ISBN: 3642051561
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.

Iterative Krylov Methods for Large Linear Systems

Iterative Krylov Methods for Large Linear Systems PDF Author: H. A. van der Vorst
Publisher: Cambridge University Press
ISBN: 9780521818285
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Table of contents

Parallel Numerical Algorithms

Parallel Numerical Algorithms PDF Author: David E. Keyes
Publisher: Springer Science & Business Media
ISBN: 9401154120
Category : Mathematics
Languages : en
Pages : 403

Get Book Here

Book Description
In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.

Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems PDF Author: Yousef Saad
Publisher: SIAM
ISBN: 9781611970739
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

The Lanczos Method

The Lanczos Method PDF Author: Louis Komzsik
Publisher: SIAM
ISBN: 9780898718188
Category : Mathematics
Languages : en
Pages : 99

Get Book Here

Book Description
The Lanczos Method: Evolution and Application is divided into two distinct parts. The first part reviews the evolution of one of the most widely used numerical techniques in the industry. The development of the method, as it became more robust, is demonstrated through easy-to-understand algorithms. The second part contains industrial applications drawn from the author's experience. These chapters provide a unique interaction between the numerical algorithms and their engineering applications.