Author: Anthony Tromba
Publisher: Birkhäuser
ISBN: 3034886136
Category : Mathematics
Languages : en
Pages : 224
Book Description
These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them.
Teichmüller Theory in Riemannian Geometry
Author: Anthony Tromba
Publisher: Birkhäuser
ISBN: 3034886136
Category : Mathematics
Languages : en
Pages : 224
Book Description
These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them.
Publisher: Birkhäuser
ISBN: 3034886136
Category : Mathematics
Languages : en
Pages : 224
Book Description
These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them.
Handbook of Teichmüller Theory
Author: Athanase Papadopoulos
Publisher: European Mathematical Society
ISBN: 9783037190296
Category : Mathematics
Languages : en
Pages : 812
Book Description
The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Publisher: European Mathematical Society
ISBN: 9783037190296
Category : Mathematics
Languages : en
Pages : 812
Book Description
The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Foundations of $p$-adic Teichmuller Theory
Author: Shinichi Mochizuki
Publisher: American Mathematical Soc.
ISBN: 1470412268
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book lays the foundation for a theory of uniformization of p-adic hyperbolic curves and their moduli. On one hand, this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic curves and their moduli to nonarchimedian places. That is why in this book, the theory is referred to as p-adic Teichmüller theory, for short. On the other hand, the theory may be regarded as a fairly precise hyperbolic analog of the Serre-Tate theory of ordinary abelian varieties and their moduli. The theory of uniformization of p-adic hyperbolic curves and their moduli was initiated in a previous work by Mochizuki. And in some sense, this book is a continuation and generalization of that work. This book aims to bridge the gap between the approach presented and the classical uniformization of a hyperbolic Riemann surface that is studied in undergraduate complex analysis. Features: Presents a systematic treatment of the moduli space of curves from the point of view of p-adic Galois representations.Treats the analog of Serre-Tate theory for hyperbolic curves.Develops a p-adic analog of Fuchsian and Bers uniformization theories.Gives a systematic treatment of a "nonabelian example" of p-adic Hodge theory. Titles in this series are co-published with International Press of Boston, Inc., Cambridge, MA.
Publisher: American Mathematical Soc.
ISBN: 1470412268
Category : Mathematics
Languages : en
Pages : 546
Book Description
This book lays the foundation for a theory of uniformization of p-adic hyperbolic curves and their moduli. On one hand, this theory generalizes the Fuchsian and Bers uniformizations of complex hyperbolic curves and their moduli to nonarchimedian places. That is why in this book, the theory is referred to as p-adic Teichmüller theory, for short. On the other hand, the theory may be regarded as a fairly precise hyperbolic analog of the Serre-Tate theory of ordinary abelian varieties and their moduli. The theory of uniformization of p-adic hyperbolic curves and their moduli was initiated in a previous work by Mochizuki. And in some sense, this book is a continuation and generalization of that work. This book aims to bridge the gap between the approach presented and the classical uniformization of a hyperbolic Riemann surface that is studied in undergraduate complex analysis. Features: Presents a systematic treatment of the moduli space of curves from the point of view of p-adic Galois representations.Treats the analog of Serre-Tate theory for hyperbolic curves.Develops a p-adic analog of Fuchsian and Bers uniformization theories.Gives a systematic treatment of a "nonabelian example" of p-adic Hodge theory. Titles in this series are co-published with International Press of Boston, Inc., Cambridge, MA.
Dynamical Aspects of Teichmüller Theory
Author: Carlos Matheus Silva Santos
Publisher: Springer
ISBN: 3319921592
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book is a remarkable contribution to the literature on dynamical systems and geometry. It consists of a selection of work in current research on Teichmüller dynamics, a field that has continued to develop rapidly in the past decades. After a comprehensive introduction, the author investigates the dynamics of the Teichmüller flow, presenting several self-contained chapters, each addressing a different aspect on the subject. The author includes innovative expositions, all the while solving open problems, constructing examples, and supplementing with illustrations. This book is a rare find in the field with its guidance and support for readers through the complex content of moduli spaces and Teichmüller Theory. The author is an internationally recognized expert in dynamical systems with a talent to explain topics that is rarely found in the field. He has created a text that would benefit specialists in, not only dynamical systems and geometry, but also Lie theory and number theory.
Publisher: Springer
ISBN: 3319921592
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book is a remarkable contribution to the literature on dynamical systems and geometry. It consists of a selection of work in current research on Teichmüller dynamics, a field that has continued to develop rapidly in the past decades. After a comprehensive introduction, the author investigates the dynamics of the Teichmüller flow, presenting several self-contained chapters, each addressing a different aspect on the subject. The author includes innovative expositions, all the while solving open problems, constructing examples, and supplementing with illustrations. This book is a rare find in the field with its guidance and support for readers through the complex content of moduli spaces and Teichmüller Theory. The author is an internationally recognized expert in dynamical systems with a talent to explain topics that is rarely found in the field. He has created a text that would benefit specialists in, not only dynamical systems and geometry, but also Lie theory and number theory.
An Introduction to Teichmüller Spaces
Author: Yoichi Imayoshi
Publisher: Springer Science & Business Media
ISBN: 4431681744
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.
Publisher: Springer Science & Business Media
ISBN: 4431681744
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book offers an easy and compact access to the theory of TeichmA1/4ller spaces, starting from the most elementary aspects to the most recent developments, e.g. the role this theory plays with regard to string theory. TeichmA1/4ller spaces give parametrization of all the complex structures on a given Riemann surface. This subject is related to many different areas of mathematics including complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, Kleinian and Fuchsian groups, automorphic forms, complex dynamics, and ergodic theory. Recently, TeichmA1/4ller spaces have begun to play an important role in string theory. Imayoshi and Taniguchi have attempted to make the book as self-contained as possible. They present numerous examples and heuristic arguments in order to help the reader grasp the ideas of TeichmA1/4ller theory. The book will be an excellent source of information for graduate students and reserachers in complex analysis and algebraic geometry as well as for theoretical physicists working in quantum theory.
Teichmüller Theory and Applications to Geometry, Topology, and Dynamics
Author: John Hamal Hubbard
Publisher:
ISBN: 9781943863013
Category :
Languages : en
Pages : 576
Book Description
Publisher:
ISBN: 9781943863013
Category :
Languages : en
Pages : 576
Book Description
Handbook of Teichmüller Theory
Author: Athanase Papadopoulos
Publisher: European Mathematical Society
ISBN: 9783037190555
Category : Mathematics
Languages : en
Pages : 888
Book Description
This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.
Publisher: European Mathematical Society
ISBN: 9783037190555
Category : Mathematics
Languages : en
Pages : 888
Book Description
This multi-volume set deals with Teichmuller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmuller theory. The aim is to give a complete panorama of this generalized Teichmuller theory and of its applications in various fields of mathematics. The volumes consist of chapters, each of which is dedicated to a specific topic. The volume has 19 chapters and is divided into four parts: The metric and the analytic theory (uniformization, Weil-Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmuller spaces, cohomology of moduli space, and the intersection theory of moduli space). The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups). Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line). The Grothendieck-Teichmuller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmuller theory of the solenoid). This handbook is an essential reference for graduate students and researchers interested in Teichmuller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis. The authors are leading experts in the field.
Decorated Teichmüller Theory
Author: R. C. Penner
Publisher: European Mathematical Society
ISBN: 9783037190753
Category : Mathematics
Languages : en
Pages : 388
Book Description
There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. Indeed, the natural coordinates give the prototypical examples not only of cluster algebras but also of tropicalization. This interplay of combinatorics and coordinates admits further manifestations, for example, in a Lie theory for homeomorphisms of the circle, in the geometry underlying the Gauss product, in profinite and pronilpotent geometry, in the combinatorics underlying conformal and topological quantum field theories, and in the geometry and combinatorics of macromolecules. This volume gives the story a wider context of these decorated Teichmuller spaces as developed by the author over the last two decades in a series of papers, some of them in collaboration. Sometimes correcting errors or typos, sometimes simplifying proofs, and sometimes articulating more general formulations than the original research papers, this volume is self contained and requires little formal background. Based on a master's course at Aarhus University, it gives the first treatment of these works in monographic form.
Publisher: European Mathematical Society
ISBN: 9783037190753
Category : Mathematics
Languages : en
Pages : 388
Book Description
There is an essentially ``tinker-toy'' model of a trivial bundle over the classical Teichmuller space of a punctured surface, called the decorated Teichmuller space, where the fiber over a point is the space of all tuples of horocycles, one about each puncture. This model leads to an extension of the classical mapping class groups called the Ptolemy groupoids and to certain matrix models solving related enumerative problems, each of which has proved useful both in mathematics and in theoretical physics. These spaces enjoy several related parametrizations leading to a rich and intricate algebro-geometric structure tied to the already elaborate combinatorial structure of the tinker-toy model. Indeed, the natural coordinates give the prototypical examples not only of cluster algebras but also of tropicalization. This interplay of combinatorics and coordinates admits further manifestations, for example, in a Lie theory for homeomorphisms of the circle, in the geometry underlying the Gauss product, in profinite and pronilpotent geometry, in the combinatorics underlying conformal and topological quantum field theories, and in the geometry and combinatorics of macromolecules. This volume gives the story a wider context of these decorated Teichmuller spaces as developed by the author over the last two decades in a series of papers, some of them in collaboration. Sometimes correcting errors or typos, sometimes simplifying proofs, and sometimes articulating more general formulations than the original research papers, this volume is self contained and requires little formal background. Based on a master's course at Aarhus University, it gives the first treatment of these works in monographic form.
The Complex Analytic Theory of Teichmuller Spaces
Author: Subhashis Nag
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : ja
Pages : 456
Book Description
An accessible, self-contained treatment of the complex structure of the Teichmüller moduli spaces of Riemann surfaces. Complex analysts, geometers, and especially string theorists (!) will find this work indispensable. The Teichmüller space, parametrizing all the various complex structures on a given surface, itself carries (in a completely natural way) the complex structure of a finite- or infinite-dimensional complex manifold. Nag emphasizes the Bers embedding of Teichmüller spaces and deals with various types of complex-analytic coördinates for them. This is the first book in which a complete exposition is given of the most basic fact that the Bers projection from Beltrami differentials onto Teichmüller space is a complex analytic submersion. The fundamental universal property enjoyed by Teichmüller space is given two proofs and the Bers complex boundary is examined to the point where totally degenerate Kleinian groups make their spectacular appearance. Contains much material previously unpublished.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : ja
Pages : 456
Book Description
An accessible, self-contained treatment of the complex structure of the Teichmüller moduli spaces of Riemann surfaces. Complex analysts, geometers, and especially string theorists (!) will find this work indispensable. The Teichmüller space, parametrizing all the various complex structures on a given surface, itself carries (in a completely natural way) the complex structure of a finite- or infinite-dimensional complex manifold. Nag emphasizes the Bers embedding of Teichmüller spaces and deals with various types of complex-analytic coördinates for them. This is the first book in which a complete exposition is given of the most basic fact that the Bers projection from Beltrami differentials onto Teichmüller space is a complex analytic submersion. The fundamental universal property enjoyed by Teichmüller space is given two proofs and the Bers complex boundary is examined to the point where totally degenerate Kleinian groups make their spectacular appearance. Contains much material previously unpublished.
Teichmüller Theory and Quadratic Differentials
Author: Frederick P. Gardiner
Publisher: Wiley-Interscience
ISBN: 9780471845393
Category : Mathematics
Languages : en
Pages : 256
Book Description
Offers a unified treatment of both the modern and the classical aspects of Teichmuller theory. The classical parts of the theory include Teichmuller's theorem on the existence and uniqueness of an extremal quasiconformal mapping in a given homotopy class of mappings between Riemann surfaces, the theorems of Bers and Ahlfors on the completeness of Poincare theta series for general Fuchsian groups and the approximation of integrable holomorphic functions in a domain by rational functions with simple poles on the boundary of the domain. The modern aspects of the theory include Ahlfors's and Bers's natural complex analytic coordinates for Teichmuller space, the infinitesimal theory of Teichmuller's metric and Kobayashi's metric, Royden's theorem that the only biholomorphic self-mappings of Teichmuller's space are induced by elements of the modular group (the action of which group is discontinuous), the Hamilton-Krushkal necessary condition for extremality, and Reich and Strebel's proof of sufficiency.
Publisher: Wiley-Interscience
ISBN: 9780471845393
Category : Mathematics
Languages : en
Pages : 256
Book Description
Offers a unified treatment of both the modern and the classical aspects of Teichmuller theory. The classical parts of the theory include Teichmuller's theorem on the existence and uniqueness of an extremal quasiconformal mapping in a given homotopy class of mappings between Riemann surfaces, the theorems of Bers and Ahlfors on the completeness of Poincare theta series for general Fuchsian groups and the approximation of integrable holomorphic functions in a domain by rational functions with simple poles on the boundary of the domain. The modern aspects of the theory include Ahlfors's and Bers's natural complex analytic coordinates for Teichmuller space, the infinitesimal theory of Teichmuller's metric and Kobayashi's metric, Royden's theorem that the only biholomorphic self-mappings of Teichmuller's space are induced by elements of the modular group (the action of which group is discontinuous), the Hamilton-Krushkal necessary condition for extremality, and Reich and Strebel's proof of sufficiency.