Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging PDF Author: Nicole Seiberlich
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094

Get Book Here

Book Description
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches

Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging PDF Author: Nicole Seiberlich
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094

Get Book Here

Book Description
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches

Understanding Magnetic Resonance Imaging

Understanding Magnetic Resonance Imaging PDF Author: Robert C. Smith
Publisher: CRC Press
ISBN: 9780849326585
Category : Medical
Languages : en
Pages : 242

Get Book Here

Book Description
Magnetic resonance imaging (MRI) is the most technically dependent imaging technique in radiology. To perform and interpret MRI studies correctly, an understanding of the basic underlying principles is essential. Understanding Magnetic Resonance Imaging explains the pulse sequences, imaging options, and coils used to produce MR images, providing a strong foundation for performing and interpreting imaging studies. The text is complemented by more than 100 figures and 25 photomicrographs illustrating the techniques discussed. Radiology residents, MR technologists, and radiologists should not be without Understanding Magnetic Resonance Imaging-the only single resource that explains all technical aspects of MRI, including recent advances, and presents all imaging options.

Breast MRI

Breast MRI PDF Author: R. Edward Hendrick
Publisher: Springer Science & Business Media
ISBN: 0387735070
Category : Medical
Languages : en
Pages : 257

Get Book Here

Book Description
With a focus on the basic imaging principles of breast MRI rather than on mathematical equations, this book takes a practical approach to imaging protocols, which helps radiologists increase their diagnostic effectiveness. It walks the reader through the basics of MRI, making it especially accessible to beginners. From a detailed outline of equipment prerequisites for obtaining high quality breast MRI to instructions on how to optimize image quality, expanded discussions on how to obtain optimized dynamic information, and explanations of good and bad imaging techniques, the book covers the topics that are most relevant to performing breast MRI.

Magnetic Resonance Imaging

Magnetic Resonance Imaging PDF Author: Vadim Kuperman
Publisher: Elsevier
ISBN: 0080535704
Category : Science
Languages : en
Pages : 197

Get Book Here

Book Description
This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. - Clear progression from fundamental physical principles of NMR to MRI and its applications - Extensive discussion of image acquisition and reconstruction of MRI - Discussion of different mechanisms of MR image contrast - Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength - In-depth consideration of artifacts in MR images - Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging - Qualitative discussion combined with mathematical description of MR techniques for imaging flow

Medical Imaging Systems

Medical Imaging Systems PDF Author: Andreas Maier
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263

Get Book Here

Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.

MRI from Picture to Proton

MRI from Picture to Proton PDF Author: Donald W. McRobbie
Publisher: Cambridge University Press
ISBN: 1316688259
Category : Medical
Languages : en
Pages : 405

Get Book Here

Book Description
MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.

Magnetic Resonance Imaging

Magnetic Resonance Imaging PDF Author: Stewart C. Bushong
Publisher: Elsevier Health Sciences
ISBN: 0323014852
Category : Medical
Languages : en
Pages : 526

Get Book Here

Book Description
Dette er en grundlæggende lærebog om konventionel MRI samt billedteknik. Den begynder med et overblik over elektricitet og magnetisme, herefter gives en dybtgående forklaring på hvordan MRI fungerer og her diskuteres de seneste metoder i radiografisk billedtagning, patientsikkerhed m.v.

Emergency Cross-sectional Radiology

Emergency Cross-sectional Radiology PDF Author: Daniel Y. F. Chung
Publisher: Cambridge University Press
ISBN: 1107375975
Category : Medical
Languages : en
Pages : 233

Get Book Here

Book Description
Cross-sectional imaging plays an ever-increasing role in the management of the acutely ill patient. There is 24/7 demand for radiologists at all levels of training to interpret complex scans, and alongside this an increased expectation that the requesting physician should be able to recognise important cross-sectional anatomy and pathology in order to expedite patient management. Emergency Cross-sectional Radiology addresses both these expectations. Part I demystifies cross-sectional imaging techniques. Part II describes a wide range of emergency conditions in an easy-to-read bullet point format. High quality images reinforce the findings, making this an invaluable rapid reference in everyday clinical practice. Emergency Cross-sectional Radiology is a practical aide-memoire for emergency medicine physicians, surgeons, acute care physicians and radiologists in everyday reporting or emergency on-call environments.

Advanced Neuro MR Techniques and Applications

Advanced Neuro MR Techniques and Applications PDF Author: In-Young Choi
Publisher: Elsevier
ISBN: 0128224797
Category : Psychology
Languages : en
Pages : 638

Get Book Here

Book Description
Advanced Neuro MR Techniques and Applications gives detailed knowledge of emerging neuro MR techniques and their specific clinical and neuroscience applications, showing their pros and cons over conventional and currently available advanced techniques. The book identifies the best available data acquisition, processing, reconstruction and analysis strategies and methods that can be utilized in clinical and neuroscience research. It is an ideal reference for MR scientists and engineers who develop MR technologies and/or support clinical and neuroscience research and for high-end users who utilize neuro MR techniques in their research, including clinicians, neuroscientists and psychologists. Trainees such as postdoctoral fellows, PhD and MD/PhD students, residents and fellows using or considering the use of neuro MR technologies will also be interested in this book. Presents a complete reference on advanced Neuro MR Techniques and Applications Edited and written by leading researchers in the field Suitable for a broad audience of MR scientists and engineers who develop MR technologies, as well as clinicians, neuroscientists and psychologists who utilize neuro MR techniques in their research

Magnetic Resonance Imaging

Magnetic Resonance Imaging PDF Author: Robert W. Brown
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976

Get Book Here

Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.