Author: Amy D. Robertson
Publisher: Routledge
ISBN: 1317423747
Category : Education
Languages : en
Pages : 285
Book Description
Answering calls in recent reform documents to shape instruction in response to students’ ideas while integrating key concepts and scientific and/or mathematical practices, this text presents the concept of responsive teaching, synthesizes existing research, and examines implications for both research and teaching. Case studies across the curriculum from elementary school through adult education illustrate the variety of forms this approach to instruction and learning can take, what is common among them, and how teachers and students experience it. The cases include intellectual products of students’ work in responsive classrooms and address assessment methods and issues. Many of the cases are supplemented with online resources (http://www.studentsthinking.org/rtsm) including classroom video and extensive transcripts, providing readers with additional opportunities to immerse themselves in responsive classrooms and to see for themselves what these environments look and feel like.
Responsive Teaching in Science and Mathematics
Author: Amy D. Robertson
Publisher: Routledge
ISBN: 1317423747
Category : Education
Languages : en
Pages : 285
Book Description
Answering calls in recent reform documents to shape instruction in response to students’ ideas while integrating key concepts and scientific and/or mathematical practices, this text presents the concept of responsive teaching, synthesizes existing research, and examines implications for both research and teaching. Case studies across the curriculum from elementary school through adult education illustrate the variety of forms this approach to instruction and learning can take, what is common among them, and how teachers and students experience it. The cases include intellectual products of students’ work in responsive classrooms and address assessment methods and issues. Many of the cases are supplemented with online resources (http://www.studentsthinking.org/rtsm) including classroom video and extensive transcripts, providing readers with additional opportunities to immerse themselves in responsive classrooms and to see for themselves what these environments look and feel like.
Publisher: Routledge
ISBN: 1317423747
Category : Education
Languages : en
Pages : 285
Book Description
Answering calls in recent reform documents to shape instruction in response to students’ ideas while integrating key concepts and scientific and/or mathematical practices, this text presents the concept of responsive teaching, synthesizes existing research, and examines implications for both research and teaching. Case studies across the curriculum from elementary school through adult education illustrate the variety of forms this approach to instruction and learning can take, what is common among them, and how teachers and students experience it. The cases include intellectual products of students’ work in responsive classrooms and address assessment methods and issues. Many of the cases are supplemented with online resources (http://www.studentsthinking.org/rtsm) including classroom video and extensive transcripts, providing readers with additional opportunities to immerse themselves in responsive classrooms and to see for themselves what these environments look and feel like.
The New Art and Science of Teaching
Author: Robert J. Marzano
Publisher:
ISBN: 9781947604032
Category : Education
Languages : en
Pages : 146
Book Description
This title is a greatly expanded volume of the original Art and Science of Teaching, offering a competency-based education framework for substantive change based on Dr. Robert Marzano's 50 years of education research. While the previous model focused on teacher outcomes, the new version places focus on student learning outcomes, with research-based instructional strategies teachers can use to help students grasp the information and skills transferred through their instruction. Throughout the book, Marzano details the elements of three overarching categories of teaching, which define what must happen to optimize student learning: students must receive feedback, get meaningful content instruction, and have their basic psychological needs met. Gain research-based instructional strategies and teaching methods that drive student success: Explore instructional strategies that correspond to each of the 43 elements of The New Art and Science of Teaching, which have been carefully designed to maximize student engagement and achievement. Use ten design questions and a general framework to help determine which classroom strategies you should use to foster student learning. Analyze the behavioral evidence that proves the strategies of an element are helping learners reach their peak academic success. Study the state of the modern standards movement and what changes must be made in K-12 education to ensure high levels of learning for all. Download free reproducible scales specific to the elements in The New Art and Science of Teaching. Contents: Chapter 1: Providing and Communicating Clear Learning Goals Chapter 2: Conducting Assessment Chapter 3: Conducting Direct Instruction Lessons Chapter 4: Practicing and Deepening Lessons Chapter 5: Implementing Knowledge Application Lessons Chapter 6: Using Strategies That Appear in All Types of Lessons Chapter 7: Using Engagement Strategies Chapter 8: Implementing Rules and Procedures Chapter 9: Building Relationships Chapter 10: Communicating High Expectations Chapter 11: Making System Changes
Publisher:
ISBN: 9781947604032
Category : Education
Languages : en
Pages : 146
Book Description
This title is a greatly expanded volume of the original Art and Science of Teaching, offering a competency-based education framework for substantive change based on Dr. Robert Marzano's 50 years of education research. While the previous model focused on teacher outcomes, the new version places focus on student learning outcomes, with research-based instructional strategies teachers can use to help students grasp the information and skills transferred through their instruction. Throughout the book, Marzano details the elements of three overarching categories of teaching, which define what must happen to optimize student learning: students must receive feedback, get meaningful content instruction, and have their basic psychological needs met. Gain research-based instructional strategies and teaching methods that drive student success: Explore instructional strategies that correspond to each of the 43 elements of The New Art and Science of Teaching, which have been carefully designed to maximize student engagement and achievement. Use ten design questions and a general framework to help determine which classroom strategies you should use to foster student learning. Analyze the behavioral evidence that proves the strategies of an element are helping learners reach their peak academic success. Study the state of the modern standards movement and what changes must be made in K-12 education to ensure high levels of learning for all. Download free reproducible scales specific to the elements in The New Art and Science of Teaching. Contents: Chapter 1: Providing and Communicating Clear Learning Goals Chapter 2: Conducting Assessment Chapter 3: Conducting Direct Instruction Lessons Chapter 4: Practicing and Deepening Lessons Chapter 5: Implementing Knowledge Application Lessons Chapter 6: Using Strategies That Appear in All Types of Lessons Chapter 7: Using Engagement Strategies Chapter 8: Implementing Rules and Procedures Chapter 9: Building Relationships Chapter 10: Communicating High Expectations Chapter 11: Making System Changes
Exploring Mathematics and Science Teachers' Knowledge
Author: Hamsa Venkat
Publisher: Routledge
ISBN: 1134683642
Category : Education
Languages : en
Pages : 236
Book Description
Globally, mathematics and science education faces three crucial challenges: an increasing need for mathematics and science graduates; a declining enrolment of school graduates into university studies in these disciplines; and the varying quality of school teaching in these areas. Alongside these challenges, internationally more and more non-specialists are teaching mathematics and science at both primary and secondary levels, and research evidence has revealed how gaps and limitations in teachers’ content understandings can lead to classroom practices that present barriers to students’ learning. This book addresses these issues by investigating how teachers’ content knowledge interacts with their pedagogies across diverse contexts and perspectives. This knowledge-practice nexus is examined across mathematics and science teaching, traversing schooling phases and countries, with an emphasis on contexts of disadvantage. These features push the boundaries of research into teachers’ content knowledge. The book’s combination of mathematics and science enriches each discipline for the reader, and contributes to our understandings of student attainment by examining the nature of specialised content knowledge needed for competent teaching within and across the two domains. Exploring Mathematics and Science Teachers’ Knowledge will be key reading for researchers, doctoral students and postgraduates with a focus on Mathematics, Science and teacher knowledge research.
Publisher: Routledge
ISBN: 1134683642
Category : Education
Languages : en
Pages : 236
Book Description
Globally, mathematics and science education faces three crucial challenges: an increasing need for mathematics and science graduates; a declining enrolment of school graduates into university studies in these disciplines; and the varying quality of school teaching in these areas. Alongside these challenges, internationally more and more non-specialists are teaching mathematics and science at both primary and secondary levels, and research evidence has revealed how gaps and limitations in teachers’ content understandings can lead to classroom practices that present barriers to students’ learning. This book addresses these issues by investigating how teachers’ content knowledge interacts with their pedagogies across diverse contexts and perspectives. This knowledge-practice nexus is examined across mathematics and science teaching, traversing schooling phases and countries, with an emphasis on contexts of disadvantage. These features push the boundaries of research into teachers’ content knowledge. The book’s combination of mathematics and science enriches each discipline for the reader, and contributes to our understandings of student attainment by examining the nature of specialised content knowledge needed for competent teaching within and across the two domains. Exploring Mathematics and Science Teachers’ Knowledge will be key reading for researchers, doctoral students and postgraduates with a focus on Mathematics, Science and teacher knowledge research.
Empowering Science and Mathematics Education in Urban Schools
Author: Edna Tan
Publisher: University of Chicago Press
ISBN: 0226037975
Category : Education
Languages : en
Pages : 215
Book Description
Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.
Publisher: University of Chicago Press
ISBN: 0226037975
Category : Education
Languages : en
Pages : 215
Book Description
Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.
The New Art and Science of Teaching Art & Music
Author: Mark Onuscheck
Publisher: New Art and Science of Teachin
ISBN: 9781945349805
Category : Art
Languages : en
Pages : 0
Book Description
"Ensure your art and music programs thrive with the support of The New Art and Science of Teaching Art and Music. Built on the foundation of Robert J. Marzano's New Art and Science of Teaching framework, this research-based book for art and music teachers outlines music- and arts-based teaching strategies. Rely on the book's myriad strategies to enhance your daily practice and promote the artistic expression, creative growth, and critical thinking skills of every student." -- Amazon.com.
Publisher: New Art and Science of Teachin
ISBN: 9781945349805
Category : Art
Languages : en
Pages : 0
Book Description
"Ensure your art and music programs thrive with the support of The New Art and Science of Teaching Art and Music. Built on the foundation of Robert J. Marzano's New Art and Science of Teaching framework, this research-based book for art and music teachers outlines music- and arts-based teaching strategies. Rely on the book's myriad strategies to enhance your daily practice and promote the artistic expression, creative growth, and critical thinking skills of every student." -- Amazon.com.
Mathematics as the Science of Patterns
Author: Patrick M. Jenlink
Publisher:
ISBN: 9781648027451
Category : Mathematics
Languages : en
Pages : 266
Book Description
Mathematics as the Science of Patterns: Making the Invisible Visible to Students through Teaching introduces the reader to a collection of thoughtful, research-based works by authors that represent current thinking about mathematics, mathematics education, and the preparation of mathematics teachers. Each chapter focuses on mathematics teaching and the preparation of teachers who will enter classrooms to instruct the next generation of students in mathematics. The value of patterns to the teaching and learning of mathematics is well understood, both in terms of research and application. When we involve or appeal to pattern in teaching mathematics, it is usually because we are trying to help students to extract greater meaning, or enjoyment, or both, from the experience of learning environments within which they are occupied, and perhaps also to facilitate remembering. As a general skill it is thought that the ability to discern a pattern is a precursor to the ability to generalize and abstract, a skill essential in the early years of learning and beyond. Research indicates that the larger problem in teaching mathematics does not lie primarily with students; rather it is with the teachers themselves. In order to make changes for students there first needs to be a process of change for teachers. Understanding the place of patterns in learning mathematics is a predicate to understanding how to teach mathematics and how to use pedagogical reasoning necessary in teaching mathematics. Importantly, the lack of distinction created by the pedagogical use of patterns is not immediately problematic to the student or the teacher. The deep-seated cognitive patterns that both teachers and students bring to the classroom require change. Chapter 1 opens the book with a focus on mathematics as the science of patterns and the importance of patterns in mathematical problem solving, providing the reader with an introduction. The authors of Chapter 2 revisit the work of Pólya and the development and implementation of problem solving in mathematics. In Chapter 3, the authors present an argument for core pedagogical content knowledge in mathematics teacher preparation. The authors of Chapter 4 focus on preservice teachers' patterns of conception as related to understanding number and operation. In Chapter 5 the authors examine the role of visual representation in exploring proportional reasoning, denoting the importance of helping learners make their thinking visible. The authors of Chapter 6 examine patterns and relationships, and the importance of each in assisting students' learning and development in mathematical understanding. The authors of Chapter 7 examine the use of worked examples as a scalable practice, with emphasis on the importance of worked examples in teaching fraction magnitude and computation is discussed. In Chapter 8, the authors expand on the zone of proximal development to investigate the potential of Zankov's Lesson in terms of students analyzing numerical equalities. The authors of Chapter 9 focus on high leverage mathematical practices in elementary pre-service teacher preparation, drawing into specific relief the APEX cycle to develop deep thinking. In Chapter 10, the author focuses on number talks and the engagement of students in mathematical reasoning, which provides opportunities for students to be sensemakers of mathematics. Chapter 11 presents an epilogue, focusing on the importance of recognizing the special nature of mathematics knowledge for teaching.
Publisher:
ISBN: 9781648027451
Category : Mathematics
Languages : en
Pages : 266
Book Description
Mathematics as the Science of Patterns: Making the Invisible Visible to Students through Teaching introduces the reader to a collection of thoughtful, research-based works by authors that represent current thinking about mathematics, mathematics education, and the preparation of mathematics teachers. Each chapter focuses on mathematics teaching and the preparation of teachers who will enter classrooms to instruct the next generation of students in mathematics. The value of patterns to the teaching and learning of mathematics is well understood, both in terms of research and application. When we involve or appeal to pattern in teaching mathematics, it is usually because we are trying to help students to extract greater meaning, or enjoyment, or both, from the experience of learning environments within which they are occupied, and perhaps also to facilitate remembering. As a general skill it is thought that the ability to discern a pattern is a precursor to the ability to generalize and abstract, a skill essential in the early years of learning and beyond. Research indicates that the larger problem in teaching mathematics does not lie primarily with students; rather it is with the teachers themselves. In order to make changes for students there first needs to be a process of change for teachers. Understanding the place of patterns in learning mathematics is a predicate to understanding how to teach mathematics and how to use pedagogical reasoning necessary in teaching mathematics. Importantly, the lack of distinction created by the pedagogical use of patterns is not immediately problematic to the student or the teacher. The deep-seated cognitive patterns that both teachers and students bring to the classroom require change. Chapter 1 opens the book with a focus on mathematics as the science of patterns and the importance of patterns in mathematical problem solving, providing the reader with an introduction. The authors of Chapter 2 revisit the work of Pólya and the development and implementation of problem solving in mathematics. In Chapter 3, the authors present an argument for core pedagogical content knowledge in mathematics teacher preparation. The authors of Chapter 4 focus on preservice teachers' patterns of conception as related to understanding number and operation. In Chapter 5 the authors examine the role of visual representation in exploring proportional reasoning, denoting the importance of helping learners make their thinking visible. The authors of Chapter 6 examine patterns and relationships, and the importance of each in assisting students' learning and development in mathematical understanding. The authors of Chapter 7 examine the use of worked examples as a scalable practice, with emphasis on the importance of worked examples in teaching fraction magnitude and computation is discussed. In Chapter 8, the authors expand on the zone of proximal development to investigate the potential of Zankov's Lesson in terms of students analyzing numerical equalities. The authors of Chapter 9 focus on high leverage mathematical practices in elementary pre-service teacher preparation, drawing into specific relief the APEX cycle to develop deep thinking. In Chapter 10, the author focuses on number talks and the engagement of students in mathematical reasoning, which provides opportunities for students to be sensemakers of mathematics. Chapter 11 presents an epilogue, focusing on the importance of recognizing the special nature of mathematics knowledge for teaching.
Thinking Practices in Mathematics and Science Learning
Author: James G. Greeno
Publisher: Routledge
ISBN: 1136485260
Category : Education
Languages : en
Pages : 451
Book Description
The term used in the title of this volume--thinking practices--evokes questions that the authors of the chapters within it begin to answer: What are thinking practices? What would schools and other learning settings look like if they were organized for the learning of thinking practices? Are thinking practices general, or do they differ by disciplines? If there are differences, what implications do those differences have for how we organize teaching and learning? How do perspectives on learning, cognition, and culture affect the kinds of learning experiences children and adults have? This volume describes advances that have been made toward answering these questions. These advances involve several agendas, including increasing interdisciplinary communication and collaboration; reconciling research on cognition with research on teaching, learning, and school culture; and strengthening the connections between research and school practice. The term thinking practices is symbolic of a combination of theoretical perspectives that have contributed to the volume editors' understanding of how people learn, how they organize their thinking inside and across disciplines, and how school learning might be better organized. By touring through some of the perspectives on thinking and learning that have evolved into school learning designs, Greeno and Goldman begin to establish a frame for what they are calling thinking practices. This volume is a significant contribution to a topic that they believe will continue to emerge as a coherent body of scientific and educational research and practice.
Publisher: Routledge
ISBN: 1136485260
Category : Education
Languages : en
Pages : 451
Book Description
The term used in the title of this volume--thinking practices--evokes questions that the authors of the chapters within it begin to answer: What are thinking practices? What would schools and other learning settings look like if they were organized for the learning of thinking practices? Are thinking practices general, or do they differ by disciplines? If there are differences, what implications do those differences have for how we organize teaching and learning? How do perspectives on learning, cognition, and culture affect the kinds of learning experiences children and adults have? This volume describes advances that have been made toward answering these questions. These advances involve several agendas, including increasing interdisciplinary communication and collaboration; reconciling research on cognition with research on teaching, learning, and school culture; and strengthening the connections between research and school practice. The term thinking practices is symbolic of a combination of theoretical perspectives that have contributed to the volume editors' understanding of how people learn, how they organize their thinking inside and across disciplines, and how school learning might be better organized. By touring through some of the perspectives on thinking and learning that have evolved into school learning designs, Greeno and Goldman begin to establish a frame for what they are calling thinking practices. This volume is a significant contribution to a topic that they believe will continue to emerge as a coherent body of scientific and educational research and practice.
Design Thinking in Schools
Author: John B. Nash
Publisher:
ISBN: 9781682534205
Category : Educational change
Languages : en
Pages : 0
Book Description
School innovation expert John B. Nash demonstrates how design thinking can be adapted successfully by busy school leaders seeking student-centered solutions to a range of challenges. Based on a decade of work teaching school leaders nationally and internationally, Design Thinking in Schools shows how leaders can adopt a design thinking mindset to uncover problems and harness the ideas and energy of students and other stakeholders to create unique, effective solutions within a single semester or school year. The book is a step-by-step guide that offers critical guidance and field‐tested tools for choosing design teams, developing prototypes, and selecting promising ideas to take to scale. It includes rich examples of educators at the elementary, middle, and high school level who have used design thinking to find creative solutions for improving student engagement, school climate, and parent-teacher conferences, among many other challenges. Nash illustrates how school leaders can use the design thinking process to access a range of student voices for a diversity of opinions and feedback on topics that better inform school change. Lively and inspiring, Design Thinking in Schools is a critical resource for school leaders seeking to leverage the untapped wealth of knowledge and experience contained within their own buildings to make schools innovative places of learning.
Publisher:
ISBN: 9781682534205
Category : Educational change
Languages : en
Pages : 0
Book Description
School innovation expert John B. Nash demonstrates how design thinking can be adapted successfully by busy school leaders seeking student-centered solutions to a range of challenges. Based on a decade of work teaching school leaders nationally and internationally, Design Thinking in Schools shows how leaders can adopt a design thinking mindset to uncover problems and harness the ideas and energy of students and other stakeholders to create unique, effective solutions within a single semester or school year. The book is a step-by-step guide that offers critical guidance and field‐tested tools for choosing design teams, developing prototypes, and selecting promising ideas to take to scale. It includes rich examples of educators at the elementary, middle, and high school level who have used design thinking to find creative solutions for improving student engagement, school climate, and parent-teacher conferences, among many other challenges. Nash illustrates how school leaders can use the design thinking process to access a range of student voices for a diversity of opinions and feedback on topics that better inform school change. Lively and inspiring, Design Thinking in Schools is a critical resource for school leaders seeking to leverage the untapped wealth of knowledge and experience contained within their own buildings to make schools innovative places of learning.
High School Mathematics Lessons to Explore, Understand, and Respond to Social Injustice
Author: Robert Q. Berry III
Publisher: Corwin Press
ISBN: 1071806467
Category : Education
Languages : en
Pages : 328
Book Description
Empower students to be the change—join the teaching mathematics for social justice movement! We live in an era in which students have —through various media and their lived experiences— a more visceral experience of social, economic, and environmental injustices. However, when people think of social justice, mathematics is rarely the first thing that comes to mind. Through model lessons developed by over 30 diverse contributors, this book brings seemingly abstract high school mathematics content to life by connecting it to the issues students see and want to change in the world. Along with expert guidance from the lead authors, the lessons in this book explain how to teach mathematics for self- and community-empowerment. It walks teachers step-by-step through the process of using mathematics—across all high school content domains—as a tool to explore, understand, and respond to issues of social injustice including: environmental injustice; wealth inequality; food insecurity; and gender, LGBTQ, and racial discrimination. This book features: Content cross-referenced by mathematical concept and social issues Downloadable instructional materials for student use User-friendly and logical interior design for daily use Guidance for designing and implementing social justice lessons driven by your own students’ unique passions and challenges Timelier than ever, teaching mathematics through the lens of social justice will connect content to students’ daily lives, fortify their mathematical understanding, and expose them to issues that will make them responsive citizens and leaders in the future.
Publisher: Corwin Press
ISBN: 1071806467
Category : Education
Languages : en
Pages : 328
Book Description
Empower students to be the change—join the teaching mathematics for social justice movement! We live in an era in which students have —through various media and their lived experiences— a more visceral experience of social, economic, and environmental injustices. However, when people think of social justice, mathematics is rarely the first thing that comes to mind. Through model lessons developed by over 30 diverse contributors, this book brings seemingly abstract high school mathematics content to life by connecting it to the issues students see and want to change in the world. Along with expert guidance from the lead authors, the lessons in this book explain how to teach mathematics for self- and community-empowerment. It walks teachers step-by-step through the process of using mathematics—across all high school content domains—as a tool to explore, understand, and respond to issues of social injustice including: environmental injustice; wealth inequality; food insecurity; and gender, LGBTQ, and racial discrimination. This book features: Content cross-referenced by mathematical concept and social issues Downloadable instructional materials for student use User-friendly and logical interior design for daily use Guidance for designing and implementing social justice lessons driven by your own students’ unique passions and challenges Timelier than ever, teaching mathematics through the lens of social justice will connect content to students’ daily lives, fortify their mathematical understanding, and expose them to issues that will make them responsive citizens and leaders in the future.
Science and Mathematics Education for 21st Century Citizens
Author: Laurinda Leite
Publisher: Nova Science Publishers
ISBN: 9781536184853
Category : Education
Languages : en
Pages : 435
Book Description
"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--
Publisher: Nova Science Publishers
ISBN: 9781536184853
Category : Education
Languages : en
Pages : 435
Book Description
"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--