Author: Eric Todd Phipps
Publisher:
ISBN:
Category :
Languages : en
Pages : 514
Book Description
A multiple shooting technique for computing periodic orbits in these systems is presented as well. This technique allows the approximation of periodic orbits using coarse discretizations and converges to the orbit on a fixed discretization. The technique is found to provide highly accurate approximations of periodic orbits. The method is applied to a simple model of bipedal walking studied in [CGMR01]. Results consistent with those found in [CGMR01] are obtained, providing independent verification of the claim of the existence of a stable walking motion in this system.
Taylor Series Integration of Differential-algebraic Equations
Progress in Differential-Algebraic Equations
Author: Sebastian Schöps
Publisher: Springer
ISBN: 3662449269
Category : Mathematics
Languages : en
Pages : 211
Book Description
This book contains the proceedings of the 8th Workshop on Coupled Descriptor Systems held March 2013 in the Castle of Eringerfeld, Geseke in the neighborhood of Paderborn, Germany. It examines the wide range of current research topics in descriptor systems, including mathematical modeling, index analysis, wellposedness of problems, stiffness and different time-scales, cosimulation and splitting methods and convergence analysis. In addition, the book also presents applications from the automotive and circuit industries that show that descriptor systems provide challenging problems from the point of view of both theory and practice. The book contains nine papers and is organized into three parts: control, simulation, and model order reduction. It will serve as an ideal resource for applied mathematicians and engineers, in particular those from mechanics and electromagnetics, who work with coupled differential equations.
Publisher: Springer
ISBN: 3662449269
Category : Mathematics
Languages : en
Pages : 211
Book Description
This book contains the proceedings of the 8th Workshop on Coupled Descriptor Systems held March 2013 in the Castle of Eringerfeld, Geseke in the neighborhood of Paderborn, Germany. It examines the wide range of current research topics in descriptor systems, including mathematical modeling, index analysis, wellposedness of problems, stiffness and different time-scales, cosimulation and splitting methods and convergence analysis. In addition, the book also presents applications from the automotive and circuit industries that show that descriptor systems provide challenging problems from the point of view of both theory and practice. The book contains nine papers and is organized into three parts: control, simulation, and model order reduction. It will serve as an ideal resource for applied mathematicians and engineers, in particular those from mechanics and electromagnetics, who work with coupled differential equations.
Calculus Volume 3
Author: Edwin Herman
Publisher:
ISBN: 9781947172838
Category : Calculus
Languages : en
Pages : 0
Book Description
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.
Publisher:
ISBN: 9781947172838
Category : Calculus
Languages : en
Pages : 0
Book Description
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.
Mathematical and Computational Approaches in Advancing Modern Science and Engineering
Author: Jacques Bélair
Publisher: Springer
ISBN: 3319303791
Category : Computers
Languages : en
Pages : 777
Book Description
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications. The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.
Publisher: Springer
ISBN: 3319303791
Category : Computers
Languages : en
Pages : 777
Book Description
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications. The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.
Automatic Differentiation: Applications, Theory, and Implementations
Author: H. Martin Bücker
Publisher: Springer Science & Business Media
ISBN: 3540284389
Category : Computers
Languages : en
Pages : 370
Book Description
Covers the state of the art in automatic differentiation theory and practice. Intended for computational scientists and engineers, this book aims to provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.
Publisher: Springer Science & Business Media
ISBN: 3540284389
Category : Computers
Languages : en
Pages : 370
Book Description
Covers the state of the art in automatic differentiation theory and practice. Intended for computational scientists and engineers, this book aims to provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.
Foundations of Differential Calculus
Author: Euler
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208
Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208
Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
Handbook of Ordinary Differential Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1351643916
Category : Mathematics
Languages : en
Pages : 1584
Book Description
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.
Publisher: CRC Press
ISBN: 1351643916
Category : Mathematics
Languages : en
Pages : 1584
Book Description
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
Author: Uri M. Ascher
Publisher: SIAM
ISBN: 161197139X
Category : Mathematics
Languages : en
Pages : 304
Book Description
Designed for those people who want to gain a practical knowledge of modern techniques, this book contains all the material necessary for a course on the numerical solution of differential equations. Written by two of the field's leading authorities, it provides a unified presentation of initial value and boundary value problems in ODEs as well as differential-algebraic equations. The approach is aimed at a thorough understanding of the issues and methods for practical computation while avoiding an extensive theorem-proof type of exposition. It also addresses reasons why existing software succeeds or fails. This book is a practical and mathematically well-informed introduction that emphasizes basic methods and theory, issues in the use and development of mathematical software, and examples from scientific engineering applications. Topics requiring an extensive amount of mathematical development, such as symplectic methods for Hamiltonian systems, are introduced, motivated, and included in the exercises, but a complete and rigorous mathematical presentation is referenced rather than included.
Publisher: SIAM
ISBN: 161197139X
Category : Mathematics
Languages : en
Pages : 304
Book Description
Designed for those people who want to gain a practical knowledge of modern techniques, this book contains all the material necessary for a course on the numerical solution of differential equations. Written by two of the field's leading authorities, it provides a unified presentation of initial value and boundary value problems in ODEs as well as differential-algebraic equations. The approach is aimed at a thorough understanding of the issues and methods for practical computation while avoiding an extensive theorem-proof type of exposition. It also addresses reasons why existing software succeeds or fails. This book is a practical and mathematically well-informed introduction that emphasizes basic methods and theory, issues in the use and development of mathematical software, and examples from scientific engineering applications. Topics requiring an extensive amount of mathematical development, such as symplectic methods for Hamiltonian systems, are introduced, motivated, and included in the exercises, but a complete and rigorous mathematical presentation is referenced rather than included.
Introduction to Differential Equations: Second Edition
Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 1470467623
Category : Education
Languages : en
Pages : 388
Book Description
This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare
Publisher: American Mathematical Soc.
ISBN: 1470467623
Category : Education
Languages : en
Pages : 388
Book Description
This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare
Numerical Methods for Ordinary Differential Equations
Author: J. C. Butcher
Publisher: John Wiley & Sons
ISBN: 9780470753750
Category : Mathematics
Languages : en
Pages : 486
Book Description
In recent years the study of numerical methods for solving ordinary differential equations has seen many new developments. This second edition of the author's pioneering text is fully revised and updated to acknowledge many of these developments. It includes a complete treatment of linear multistep methods whilst maintaining its unique and comprehensive emphasis on Runge-Kutta methods and general linear methods. Although the specialist topics are taken to an advanced level, the entry point to the volume as a whole is not especially demanding. Early chapters provide a wide-ranging introduction to differential equations and difference equations together with a survey of numerical differential equation methods, based on the fundamental Euler method with more sophisticated methods presented as generalizations of Euler. Features of the book include Introductory work on differential and difference equations. A comprehensive introduction to the theory and practice of solving ordinary differential equations numerically. A detailed analysis of Runge-Kutta methods and of linear multistep methods. A complete study of general linear methods from both theoretical and practical points of view. The latest results on practical general linear methods and their implementation. A balance between informal discussion and rigorous mathematical style. Examples and exercises integrated into each chapter enhancing the suitability of the book as a course text or a self-study treatise. Written in a lucid style by one of the worlds leading authorities on numerical methods for ordinary differential equations and drawing upon his vast experience, this new edition provides an accessible and self-contained introduction, ideal for researchers and students following courses on numerical methods, engineering and other sciences.
Publisher: John Wiley & Sons
ISBN: 9780470753750
Category : Mathematics
Languages : en
Pages : 486
Book Description
In recent years the study of numerical methods for solving ordinary differential equations has seen many new developments. This second edition of the author's pioneering text is fully revised and updated to acknowledge many of these developments. It includes a complete treatment of linear multistep methods whilst maintaining its unique and comprehensive emphasis on Runge-Kutta methods and general linear methods. Although the specialist topics are taken to an advanced level, the entry point to the volume as a whole is not especially demanding. Early chapters provide a wide-ranging introduction to differential equations and difference equations together with a survey of numerical differential equation methods, based on the fundamental Euler method with more sophisticated methods presented as generalizations of Euler. Features of the book include Introductory work on differential and difference equations. A comprehensive introduction to the theory and practice of solving ordinary differential equations numerically. A detailed analysis of Runge-Kutta methods and of linear multistep methods. A complete study of general linear methods from both theoretical and practical points of view. The latest results on practical general linear methods and their implementation. A balance between informal discussion and rigorous mathematical style. Examples and exercises integrated into each chapter enhancing the suitability of the book as a course text or a self-study treatise. Written in a lucid style by one of the worlds leading authorities on numerical methods for ordinary differential equations and drawing upon his vast experience, this new edition provides an accessible and self-contained introduction, ideal for researchers and students following courses on numerical methods, engineering and other sciences.