Tailored Metal Nanoparticles for Selective Catalysis

Tailored Metal Nanoparticles for Selective Catalysis PDF Author: Christine V. Gaskell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The development of clean, sustainable chemical processes is a key priority towards meeting the growing demand for synthetic functional chemicals, while balancing rapidly depleting natural resources. The selective oxidation (selox) of crotyl alcohol to crotonaldehyde and the selective hydrogenation of benzyl cyanide to phenylethylamine are two specific systems for which, it is proposed, new heterogeneous catalysts and deeper mechanistic insight will improve. In this thesis the rational design of palladium catalysts is investigated for these systems, via synthesis of palladium nanoparticles with tailored morphology and palladium-gold nanoparticles with tuneable surface composition. Pd icosahedra, nanorods and nanocubes were synthesised and characterised extensively to confirm the size and morphology of the nanoparticles. Pd icosahedra are revealed to be three times more active for crotyl alcohol selox than the nanocubes, and ten times faster than the nanorods, while maintaining good selectivity. An Au-shell, Pd-core structure was synthesised, progressively annealed to induce alloying and characterised using various in situ spectroscopies. Surface Au was found to enhance crotyl alcohol selox activity and selectivity towards crotonaldehyde, in accordance with model predictions. An optimum crotonaldehyde yield was obtained for an Au40Pd60 surface alloy. By employing in situ and time-resolved spectroscopies the active site of Pd selox catalysts is examined, and the role of oxygen in this system and the catalyst's kinetic behaviour is defined. Reversible redox cycling of the catalyst dependent on its environment was observed, and it was possible to identify PdOx as the active catalytic species responsible for selectively oxidising crotyl alcohol to crotonaldehyde, with high temperatures suppressing catalytic selectivity. Systematic characterisation of an industrial carbon supported Pd catalyst, used in nitrile hydrogenation, reveals potential sources of deactivation including surface poisoning by CN species. Solutions to improve catalyst performance are proposed using the knowledge acquired from the nanoparticle catalysts' studies.

Tailored Metal Nanoparticles for Selective Catalysis

Tailored Metal Nanoparticles for Selective Catalysis PDF Author: Christine V. Gaskell
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The development of clean, sustainable chemical processes is a key priority towards meeting the growing demand for synthetic functional chemicals, while balancing rapidly depleting natural resources. The selective oxidation (selox) of crotyl alcohol to crotonaldehyde and the selective hydrogenation of benzyl cyanide to phenylethylamine are two specific systems for which, it is proposed, new heterogeneous catalysts and deeper mechanistic insight will improve. In this thesis the rational design of palladium catalysts is investigated for these systems, via synthesis of palladium nanoparticles with tailored morphology and palladium-gold nanoparticles with tuneable surface composition. Pd icosahedra, nanorods and nanocubes were synthesised and characterised extensively to confirm the size and morphology of the nanoparticles. Pd icosahedra are revealed to be three times more active for crotyl alcohol selox than the nanocubes, and ten times faster than the nanorods, while maintaining good selectivity. An Au-shell, Pd-core structure was synthesised, progressively annealed to induce alloying and characterised using various in situ spectroscopies. Surface Au was found to enhance crotyl alcohol selox activity and selectivity towards crotonaldehyde, in accordance with model predictions. An optimum crotonaldehyde yield was obtained for an Au40Pd60 surface alloy. By employing in situ and time-resolved spectroscopies the active site of Pd selox catalysts is examined, and the role of oxygen in this system and the catalyst's kinetic behaviour is defined. Reversible redox cycling of the catalyst dependent on its environment was observed, and it was possible to identify PdOx as the active catalytic species responsible for selectively oxidising crotyl alcohol to crotonaldehyde, with high temperatures suppressing catalytic selectivity. Systematic characterisation of an industrial carbon supported Pd catalyst, used in nitrile hydrogenation, reveals potential sources of deactivation including surface poisoning by CN species. Solutions to improve catalyst performance are proposed using the knowledge acquired from the nanoparticle catalysts' studies.

Metal Nanoparticles for Catalysis

Metal Nanoparticles for Catalysis PDF Author: Franklin (Feng) Tao
Publisher: Royal Society of Chemistry
ISBN: 1782620338
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
An introduction to the synthesis and applications of different nanocatalysts.

Au and Pt Nanoparticle Supported Catalysts Tailored for H-2 Production

Au and Pt Nanoparticle Supported Catalysts Tailored for H-2 Production PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au- and Pt- based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects of studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).

Nanoparticles in Catalysis

Nanoparticles in Catalysis PDF Author: Karine Philippot
Publisher: John Wiley & Sons
ISBN: 3527821759
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.

Metal Nanoparticles

Metal Nanoparticles PDF Author: Daniel L. Fedlheim
Publisher: CRC Press
ISBN: 9780585404394
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
A state-of-the-art reference, Metal Nanoparticles offers the latest research on the synthesis, characterization, and applications of nanoparticles. Following an introduction of structural, optical, electronic, and electrochemical properties of nanoparticles, the book elaborates on nanoclusters, hyper-Raleigh scattering, nanoarrays, and several applications including single electron devices, chemical sensors, biomolecule sensors, and DNA detection. The text emphasizes how size, shape, and surface chemistry affect particle performance throughout. Topics include synthesis and formation of nanoclusters, nanosphere lithography, modeling of nanoparticle optical properties, and biomolecule sensors.

Nanotechnology in Catalysis Volumes 1 and 2

Nanotechnology in Catalysis Volumes 1 and 2 PDF Author: Bing Zhou
Publisher: Springer Science & Business Media
ISBN: 9780306483233
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
This book is mainly based on the first and second symposia on Nanotechnology in Catalysis held in 2001 and 2002, but it also includes several contributions not presented in the symposia to round out the scope of the subject. The contents are the most up to date developments made by researchers all over the world in the catalysis field in this fascinating nanotechnology era. It reflects some of the frontier areas of nanoscience and nanotechnology in fabricating and characterizing catalysts and carrying out studies to prove their superior selectivity and activity. The field of application of nanotechnology for the development of catalysts for green chemistry is likely to grow rapidly during the next decade. This book hopes to contribute to the evolution of nanotechnology in that direction.

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control

Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control PDF Author: Benedetto Corain
Publisher: Elsevier
ISBN: 0080555004
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control deals with the synthesis of metal nanoclusters along all known methodologies. Physical and chemical properties of metal nanoclusters relevant to their applications in chemical processing and materials science are covered thoroughly. Special attention is given to the role of metal nanoclusters size and shape in catalytic processes and catalytic applications relevant to industrial chemical processing.An excellent text for expanding the knowledge on the chemistry and physics of metal nanoclusters. Divided in two parts; Part I deals with general aspects of the matter and Part II has to be considered a useful handbook dealing with the production of metal nanoclusters, especially from their size-control point of view. * Divided into two parts for ease of reference: general and operational * Separation of synthetic aspects, physical properties and applications* Specific attention is given to the task of metal nanoclusters size-control

Tailored Polymers and Applications

Tailored Polymers and Applications PDF Author: Yagci
Publisher: CRC Press
ISBN: 1466562072
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
This book contains a selection of papers presented at APME '99 ( Third International Symposium on Advanced Polymers via Macromolecular Engineering --- Colonial Williamsburg, VA, USA, July/August 1999). The book focuses on the synthesis of targeted polymers with specific properties using macromolecular architecture. Various controlled polymerization

The Catalysis of Uniform Metal Nanoparticles Deposited Onto Oxide Supports

The Catalysis of Uniform Metal Nanoparticles Deposited Onto Oxide Supports PDF Author: Nathan Musselwhite
Publisher:
ISBN:
Category :
Languages : en
Pages : 135

Get Book Here

Book Description
Model materials consisting of metal nanoparticles loaded onto oxide supports were synthesized, characterized, and investigated in a number of catalytic chemical reactions. By varying the size, shape, and composition of nanoparticle, as well as the material used to support the nanoparticles, it was found that small changes to the catalyst can have enormous changes to the reaction activity and selectivity. Investigation of these carefully synthesized catalysts via in situ characterization, and reaction studies, leads to a deeper understanding of the molecular level parameters that govern catalysis. Through study of the properties of the nanoparticles it was discovered that nanoparticle size and shape have a dominant role in the chemoselective catalysis of furfural over platinum nanoparticles. When vapor phase furfural and hydrogen gas were passed over Pt nanoparticles ranging in size from 1.5 to 7.1 nm, the catalytic selectivity was found to be dominated by the size of the nanoparticle. Large nanoparticles promoted hydrogenation of furfural to furfuryl alcohol, while smaller nanoparticles favored decarbonylation to furan. The same size specific selectivity was found in the hydrogenative reforming (the transformation of hydrocarbons to branched isomers) of C6 hydrocarbons, in which Pt nanoparticle size controls isomerization selectivity. Methylcyclopentane was found to be extremely size dependent at lower temperatures (553 K). It was found that smaller sized nanoparticles favored isomer formation, while larger sizes catalyzed the aromatization reaction more efficiently. n-hexane was found to be much less dependent on particle size, but still showed an increase in isomerization with small particles over larger sized Pt nanoparticles. The composition of PtxRh1-x bimetallic nanoparticles was also studied. These catalysts were characterized under hexane reforming conditions with Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS), in order to find the actual surface atomic composition under real catalytic working conditions. By using AP-XPS and catalytic data in tandem, it was found that an optimum Rh loading occurred when the surface ensemble statistically favored one Rh atom surrounded by Pt atoms. By utilizing different oxide materials for catalytic supports the flow of charge can play a role in the reaction at the surface or interface in a phenomenon known as the strong metal-support interaction (SMSI). When Pt nanoparticles were loaded onto mesoporous supports made of Co3O4, NiO, MnO2, Fe2O3, and CeO2 it was found that their activity for carbon monoxide oxidation was greatly enhanced relative to the support alone or Pt loaded onto inert mesoporous silica. This finding demonstrates that the interface of the metallic Pt nanoparticle and the oxide support is able to produce turnovers that are orders of magnitude higher than the two materials separately. When the same type of experiments were investigated with n-hexane as the reactant and macroporous Al2O3, TiO2, Nb2O5, Ta2O5, and ZrO2 were utilized as supports, it was found that the reaction selectivity was greatly altered depending on the catalytic support material. TiO2, Nb2O5, and Ta2O5 (all of which are strong Lewis acids) were found to be much more selective for isomer production than the standard SiO2 mesoporous silica supported Pt nanoparticle catalyst. Finally, an acidified mesoporous silica material was utilized as the support. This material was synthesized by using AlCl3 to modify the surface of mesoporous silica. This support was found to have no activity for hexane isomerization alone. However, when Pt nanoparticles were supported on the material, the activity and isomer selectivity in hexane reforming was increased several orders of magnitude as compared to the same nanoparticles supported on unmodified mesoporous silica. This dissertation builds on the existing knowledge of known concepts in catalysis science such as structure sensitive reactions, the metal-support interaction, and acid-base chemistry. The results show how small changes in the active sites of a catalyst can create large changes in the catalytic chemistry. This research demonstrates how careful material control, characterization and reaction study can help to elucidate the molecular level components necessary to design efficient catalysts.

Selectivity in Catalysis

Selectivity in Catalysis PDF Author: Mark E. Davis
Publisher:
ISBN:
Category : SCIENCE
Languages : en
Pages : 432

Get Book Here

Book Description
Discusses recent research and provides tutorial chapters on enhancing selectivity in catalysis through stereoselectivity, reaction pathway control, shape selectivity, and alloys and clusters. Presents an interdisciplinary approach to increasing selectivity in homogeneous and heterogeneous catalysis research. Includes an overview chapter that discusses the current state of the field and offers a perspective on future directions.