Systems Theory and PDEs

Systems Theory and PDEs PDF Author: Felix L. Schwenninger
Publisher: Springer Nature
ISBN: 3031649915
Category :
Languages : en
Pages : 262

Get Book Here

Book Description

Systems Theory and PDEs

Systems Theory and PDEs PDF Author: Felix L. Schwenninger
Publisher: Springer Nature
ISBN: 3031649915
Category :
Languages : en
Pages : 262

Get Book Here

Book Description


Mathematical Control of Coupled PDEs

Mathematical Control of Coupled PDEs PDF Author: Irena Lasiecka
Publisher: SIAM
ISBN: 9780898717099
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description


Nonlinear PDEs

Nonlinear PDEs PDF Author: Guido Schneider
Publisher: American Mathematical Soc.
ISBN: 1470436132
Category : Mathematics
Languages : en
Pages : 593

Get Book Here

Book Description
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems PDF Author: Irena Lasiecka
Publisher: Cambridge University Press
ISBN: 9780521434089
Category : Mathematics
Languages : en
Pages : 678

Get Book Here

Book Description
Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.

Input-to-State Stability for PDEs

Input-to-State Stability for PDEs PDF Author: Iasson Karafyllis
Publisher: Springer
ISBN: 3319910116
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
This book lays the foundation for the study of input-to-state stability (ISS) of partial differential equations (PDEs) predominantly of two classes—parabolic and hyperbolic. This foundation consists of new PDE-specific tools. In addition to developing ISS theorems, equipped with gain estimates with respect to external disturbances, the authors develop small-gain stability theorems for systems involving PDEs. A variety of system combinations are considered: PDEs (of either class) with static maps; PDEs (again, of either class) with ODEs; PDEs of the same class (parabolic with parabolic and hyperbolic with hyperbolic); and feedback loops of PDEs of different classes (parabolic with hyperbolic). In addition to stability results (including ISS), the text develops existence and uniqueness theory for all systems that are considered. Many of these results answer for the first time the existence and uniqueness problems for many problems that have dominated the PDE control literature of the last two decades, including—for PDEs that include non-local terms—backstepping control designs which result in non-local boundary conditions. Input-to-State Stability for PDEs will interest applied mathematicians and control specialists researching PDEs either as graduate students or full-time academics. It also contains a large number of applications that are at the core of many scientific disciplines and so will be of importance for researchers in physics, engineering, biology, social systems and others.

Partial Differential Equations

Partial Differential Equations PDF Author: Michael Shearer
Publisher: Princeton University Press
ISBN: 0691161291
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations PDF Author: Robert Bryant
Publisher: University of Chicago Press
ISBN: 9780226077932
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
In Exterior Differential Systems, the authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study. Because it plays a central role in uncovering geometric properties of differential equations, the method of equivalence is particularly emphasized. In addition, the authors discuss conformally invariant systems at length, including results on the classification and application of symmetries and conservation laws. The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws. This timely synthesis of partial differential equations and differential geometry will be of fundamental importance to both students and experienced researchers working in geometric analysis.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Modern Aspects of the Theory of Partial Differential Equations

Modern Aspects of the Theory of Partial Differential Equations PDF Author: Michael Ruzhansky
Publisher: Springer Science & Business Media
ISBN: 303480069X
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
The book provides a quick overview of a wide range of active research areas in partial differential equations. The book can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions from authors from a large variety of countries on different aspects of partial differential equations, such as evolution equations and estimates for their solutions, control theory, inverse problems, nonlinear equations, elliptic theory on singular domains, numerical approaches.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.