Author: Bernhard Ø. Palsson
Publisher: Cambridge University Press
ISBN: 1139448943
Category : Science
Languages : en
Pages : 287
Book Description
Genome sequences are now available that enable us to determine the biological components that make up a cell or an organism. The discipline of systems biology examines how these components interact and form networks, and how the networks generate whole cell functions corresponding to observable phenotypes. This textbook, devoted to systems biology, describes how to model networks, how to determine their properties, and how to relate these to phenotypic functions. The prerequisites are some knowledge of linear algebra and biochemistry. Though the links between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, in an associated website Palsson provides problem sets, projects and Powerpoint slides, and keeps the presentation in the book concrete with illustrative material and experimental results.
Systems Biology
Author: Bernhard Ø. Palsson
Publisher: Cambridge University Press
ISBN: 1139448943
Category : Science
Languages : en
Pages : 287
Book Description
Genome sequences are now available that enable us to determine the biological components that make up a cell or an organism. The discipline of systems biology examines how these components interact and form networks, and how the networks generate whole cell functions corresponding to observable phenotypes. This textbook, devoted to systems biology, describes how to model networks, how to determine their properties, and how to relate these to phenotypic functions. The prerequisites are some knowledge of linear algebra and biochemistry. Though the links between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, in an associated website Palsson provides problem sets, projects and Powerpoint slides, and keeps the presentation in the book concrete with illustrative material and experimental results.
Publisher: Cambridge University Press
ISBN: 1139448943
Category : Science
Languages : en
Pages : 287
Book Description
Genome sequences are now available that enable us to determine the biological components that make up a cell or an organism. The discipline of systems biology examines how these components interact and form networks, and how the networks generate whole cell functions corresponding to observable phenotypes. This textbook, devoted to systems biology, describes how to model networks, how to determine their properties, and how to relate these to phenotypic functions. The prerequisites are some knowledge of linear algebra and biochemistry. Though the links between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, in an associated website Palsson provides problem sets, projects and Powerpoint slides, and keeps the presentation in the book concrete with illustrative material and experimental results.
Systems Biology of Metabolic and Signaling Networks
Author: Miguel A. Aon
Publisher: Springer Science & Business Media
ISBN: 3642385052
Category : Science
Languages : en
Pages : 375
Book Description
Systems Biology represents a new paradigm aiming at a whole-organism-level understanding of biological phenomena, emphasizing interconnections and functional interrelationships rather than component parts. The study of network properties, and how they control and regulate behavior from the cellular to organism level, constitutes a main focus of Systems Biology. This book addresses from a novel perspective a major unsolved biological problem: understanding how a cell works and what goes wrong in pathology. The task undertaken by the authors is in equal parts conceptual and methodological, integrative and analytical, experimental and theoretical, qualitative and quantitative, didactic and comprehensive. Essentially, they unravel the spatio-temporal unfolding of interacting mass-energy and information networks at the cellular and organ levels, as well as its modulation through activation or repression by signaling networks to produce a certain phenotype or (patho)physiological response. Starting with the historical roots, in thirteen chapters this work explores the Systems Biology of signaling networks, cellular structures and fluxes, organ and microorganism functions. In doing so, it establishes the basis of a 21st century approach to biological complexity.
Publisher: Springer Science & Business Media
ISBN: 3642385052
Category : Science
Languages : en
Pages : 375
Book Description
Systems Biology represents a new paradigm aiming at a whole-organism-level understanding of biological phenomena, emphasizing interconnections and functional interrelationships rather than component parts. The study of network properties, and how they control and regulate behavior from the cellular to organism level, constitutes a main focus of Systems Biology. This book addresses from a novel perspective a major unsolved biological problem: understanding how a cell works and what goes wrong in pathology. The task undertaken by the authors is in equal parts conceptual and methodological, integrative and analytical, experimental and theoretical, qualitative and quantitative, didactic and comprehensive. Essentially, they unravel the spatio-temporal unfolding of interacting mass-energy and information networks at the cellular and organ levels, as well as its modulation through activation or repression by signaling networks to produce a certain phenotype or (patho)physiological response. Starting with the historical roots, in thirteen chapters this work explores the Systems Biology of signaling networks, cellular structures and fluxes, organ and microorganism functions. In doing so, it establishes the basis of a 21st century approach to biological complexity.
Modeling in Systems Biology
Author: Ina Koch
Publisher: Springer Science & Business Media
ISBN: 1849964742
Category : Computers
Languages : en
Pages : 378
Book Description
The emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.
Publisher: Springer Science & Business Media
ISBN: 1849964742
Category : Computers
Languages : en
Pages : 378
Book Description
The emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.
Systems Biology
Author: Lilia Alberghina
Publisher: Springer Science & Business Media
ISBN: 9783540742692
Category : Computers
Languages : en
Pages : 432
Book Description
For life to be understood and disease to become manageable, the wealth of postgenomic data now needs to be made dynamic. This development requires systems biology, integrating computational models for cells and organisms in health and disease; quantitative experiments (high-throughput, genome-wide, living cell, in silico); and new concepts and principles concerning interactions. This book defines the new field of systems biology and discusses the most efficient experimental and computational strategies. The benefits for industry, such as the new network-based drug-target design validation, and testing, are also presented.
Publisher: Springer Science & Business Media
ISBN: 9783540742692
Category : Computers
Languages : en
Pages : 432
Book Description
For life to be understood and disease to become manageable, the wealth of postgenomic data now needs to be made dynamic. This development requires systems biology, integrating computational models for cells and organisms in health and disease; quantitative experiments (high-throughput, genome-wide, living cell, in silico); and new concepts and principles concerning interactions. This book defines the new field of systems biology and discusses the most efficient experimental and computational strategies. The benefits for industry, such as the new network-based drug-target design validation, and testing, are also presented.
Biomolecular Networks
Author: Luonan Chen
Publisher: John Wiley & Sons
ISBN: 9780470488058
Category : Computers
Languages : en
Pages : 416
Book Description
Alternative techniques and tools for analyzing biomolecular networks With the recent rapid advances in molecular biology, high-throughput experimental methods have resulted in enormous amounts of data that can be used to study biomolecular networks in living organisms. With this development has come recognition of the fact that a complicated living organism cannot be fully understood by merely analyzing individual components. Rather, it is the interactions of components or biomolecular networks that are ultimately responsible for an organism's form and function. This book addresses the important need for a new set of computational tools to reveal essential biological mechanisms from a systems biology approach. Readers will get comprehensive coverage of analyzing biomolecular networks in cellular systems based on available experimental data with an emphasis on the aspects of network, system, integration, and engineering. Each topic is treated in depth with specific biological problems and novel computational methods: GENE NETWORKS—Transcriptional regulation; reconstruction of gene regulatory networks; and inference of transcriptional regulatory networks PROTEIN INTERACTION NETWORKS—Prediction of protein-protein interactions; topological structure of biomolecular networks; alignment of biomolecular networks; and network-based prediction of protein function METABOLIC NETWORKS AND SIGNALING NETWORKS—Analysis, reconstruction, and applications of metabolic networks; modeling and inference of signaling networks; and other topics and new trends In addition to theoretical results and methods, many computational software tools are referenced and available from the authors' Web sites. Biomolecular Networks is an indispensable reference for researchers and graduate students in bioinformatics, computational biology, systems biology, computer science, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 9780470488058
Category : Computers
Languages : en
Pages : 416
Book Description
Alternative techniques and tools for analyzing biomolecular networks With the recent rapid advances in molecular biology, high-throughput experimental methods have resulted in enormous amounts of data that can be used to study biomolecular networks in living organisms. With this development has come recognition of the fact that a complicated living organism cannot be fully understood by merely analyzing individual components. Rather, it is the interactions of components or biomolecular networks that are ultimately responsible for an organism's form and function. This book addresses the important need for a new set of computational tools to reveal essential biological mechanisms from a systems biology approach. Readers will get comprehensive coverage of analyzing biomolecular networks in cellular systems based on available experimental data with an emphasis on the aspects of network, system, integration, and engineering. Each topic is treated in depth with specific biological problems and novel computational methods: GENE NETWORKS—Transcriptional regulation; reconstruction of gene regulatory networks; and inference of transcriptional regulatory networks PROTEIN INTERACTION NETWORKS—Prediction of protein-protein interactions; topological structure of biomolecular networks; alignment of biomolecular networks; and network-based prediction of protein function METABOLIC NETWORKS AND SIGNALING NETWORKS—Analysis, reconstruction, and applications of metabolic networks; modeling and inference of signaling networks; and other topics and new trends In addition to theoretical results and methods, many computational software tools are referenced and available from the authors' Web sites. Biomolecular Networks is an indispensable reference for researchers and graduate students in bioinformatics, computational biology, systems biology, computer science, and applied mathematics.
Computational Systems Biology
Author: Andres Kriete
Publisher: Academic Press
ISBN: 0124059384
Category : Science
Languages : en
Pages : 549
Book Description
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.
Publisher: Academic Press
ISBN: 0124059384
Category : Science
Languages : en
Pages : 549
Book Description
This comprehensively revised second edition of Computational Systems Biology discusses the experimental and theoretical foundations of the function of biological systems at the molecular, cellular or organismal level over temporal and spatial scales, as systems biology advances to provide clinical solutions to complex medical problems. In particular the work focuses on the engineering of biological systems and network modeling. - Logical information flow aids understanding of basic building blocks of life through disease phenotypes - Evolved principles gives insight into underlying organizational principles of biological organizations, and systems processes, governing functions such as adaptation or response patterns - Coverage of technical tools and systems helps researchers to understand and resolve specific systems biology problems using advanced computation - Multi-scale modeling on disparate scales aids researchers understanding of dependencies and constraints of spatio-temporal relationships fundamental to biological organization and function.
A First Course in Systems Biology
Author: Eberhard Voit
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 481
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Publisher: Garland Science
ISBN: 1351332945
Category : Computers
Languages : en
Pages : 481
Book Description
A First Course in Systems Biology is an introduction for advanced undergraduate and graduate students to the growing field of systems biology. Its main focus is the development of computational models and their applications to diverse biological systems. The book begins with the fundamentals of modeling, then reviews features of the molecular inventories that bring biological systems to life and discusses case studies that represent some of the frontiers in systems biology and synthetic biology. In this way, it provides the reader with a comprehensive background and access to methods for executing standard systems biology tasks, understanding the modern literature, and launching into specialized courses or projects that address biological questions using theoretical and computational means. New topics in this edition include: default modules for model design, limit cycles and chaos, parameter estimation in Excel, model representations of gene regulation through transcription factors, derivation of the Michaelis-Menten rate law from the original conceptual model, different types of inhibition, hysteresis, a model of differentiation, system adaptation to persistent signals, nonlinear nullclines, PBPK models, and elementary modes. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and large-scale, often open-ended questions for further reflection.
Handbook of Systems Biology
Author: Marian Walhout
Publisher: Academic Press
ISBN: 012385945X
Category : Science
Languages : en
Pages : 553
Book Description
This book provides an entry point into Systems Biology for researchers in genetics, molecular biology, cell biology, microbiology and biomedical science to understand the key concepts to expanding their work. Chapters organized around broader themes of Organelles and Organisms, Systems Properties of Biological Processes, Cellular Networks, and Systems Biology and Disease discuss the development of concepts, the current applications, and the future prospects. Emphasis is placed on concepts and insights into the multi-disciplinary nature of the field as well as the importance of systems biology in human biological research. Technology, being an extremely important aspect of scientific progress overall, and in the creation of new fields in particular, is discussed in 'boxes' within each chapter to relate to appropriate topics. - 2013 Honorable Mention for Single Volume Reference in Science from the Association of American Publishers' PROSE Awards - Emphasizes the interdisciplinary nature of systems biology with contributions from leaders in a variety of disciplines - Includes the latest research developments in human and animal models to assist with translational research - Presents biological and computational aspects of the science side-by-side to facilitate collaboration between computational and biological researchers
Publisher: Academic Press
ISBN: 012385945X
Category : Science
Languages : en
Pages : 553
Book Description
This book provides an entry point into Systems Biology for researchers in genetics, molecular biology, cell biology, microbiology and biomedical science to understand the key concepts to expanding their work. Chapters organized around broader themes of Organelles and Organisms, Systems Properties of Biological Processes, Cellular Networks, and Systems Biology and Disease discuss the development of concepts, the current applications, and the future prospects. Emphasis is placed on concepts and insights into the multi-disciplinary nature of the field as well as the importance of systems biology in human biological research. Technology, being an extremely important aspect of scientific progress overall, and in the creation of new fields in particular, is discussed in 'boxes' within each chapter to relate to appropriate topics. - 2013 Honorable Mention for Single Volume Reference in Science from the Association of American Publishers' PROSE Awards - Emphasizes the interdisciplinary nature of systems biology with contributions from leaders in a variety of disciplines - Includes the latest research developments in human and animal models to assist with translational research - Presents biological and computational aspects of the science side-by-side to facilitate collaboration between computational and biological researchers
An Introduction to Systems Biology
Author: Uri Alon
Publisher: CRC Press
ISBN: 1584886420
Category : Mathematics
Languages : en
Pages : 324
Book Description
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.
Publisher: CRC Press
ISBN: 1584886420
Category : Mathematics
Languages : en
Pages : 324
Book Description
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.
Systems Biology of Cell Signaling
Author: Zhike Zi
Publisher: Frontiers Media SA
ISBN: 2889742814
Category : Science
Languages : en
Pages : 224
Book Description
Topic Editor Prof. Xing is in collaboration with ATCC (https://www.atcc.org/) on testing some of their cell lines in research. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Publisher: Frontiers Media SA
ISBN: 2889742814
Category : Science
Languages : en
Pages : 224
Book Description
Topic Editor Prof. Xing is in collaboration with ATCC (https://www.atcc.org/) on testing some of their cell lines in research. All other Topic Editors declare no competing interests with regards to the Research Topic subject.