Synthesis of Noble Metal Nanomaterials for Electrochemical Catalysis Application

Synthesis of Noble Metal Nanomaterials for Electrochemical Catalysis Application PDF Author: Zipeng Zhao
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description
Environmental issues have attracted more and more public attention. Fuel cell, which is an energy conversion device, consumes renewable fuel (hydrogen, methanol etc.) and oxygen to produce electricity. It holds broad application potential for future automobile vehicle and portable device. Electrochemistry catalysis plays a key role in fuel cell operation as all energy conversion reactions are based on electrochemistry catalysis. In present hydrogen based proton exchange membrane fuel cell, cathode oxygen reduction reaction (ORR) demands significant larger amount of catalyst than hydrogen oxidation reaction (HOR) at anode because the cathode ORR is six orders magnitude slower than anode HOR. Now days, Platinum is used as catalyst for ORR, the scarcity and precious feature of platinum contributes to the high cost of fuel cell system which is the biggest obstacle for fuel cell broad application. Non-platinum catalyst is under developing but far away from practical requirement. Thus, intensive research is focused on developing new Pt based catalyst with lower Pt loading, higher activity and longer life time. Inspired by ORR study on Pt75Ni25(111) single crystal electrode, my work is focused on developing octahedral PtNi, PtNiCo, and PtNiCu nano structures with exposed {111} facet. I developed a simple method for direct growth of PtNi octahedral nanostructure on carbon support. The advantage of prepared octahedral PtNi catalysts is the good dispersity on carbon support as well as bulk surfactant free surface. In ORR test, the prepared octahedral PtNi/C catalyst demonstrates at least 7.9 times mass activity (ORR activity normalized by Pt mass loading) compared to commercial Pt/C catalyst. The method can also be extended for synthesis of PtNiCo and PtNiCu ternary alloy catalyst. By introducing Co2CO8 as precursor, which can release metallic cobalt during decomposition, cobalt co-reducing challenge during PtNi synthesis can be overcome. Thus, I developed a method for direct growth of PtNiCo ternary alloy catalyst with uniform elemental distribution on carbon support. The ORR test result demonstrates that ORR activity can be optimized by composition tuning for PtNiCo ternary catalyst. It is noted that alloying Pt with transition metal can improve the ORR activity of Pt. The transition metal retention is important for catalyst stability because transition metal content is critical for ORR activity. I find with the present of Cu, octahedral PtNiCu ternary nanostructure can retain more transition metal than octahedral PtNi, leading to the improved activity after catalyst activation and better stability. The PtNiCu shows at least 13.2 times mass activity compared to commercial Pt/C. Furthermore, octahedral PtNiCu shows significantly improved stability (mass activity retention) compared to commercial Pt/C. In addition to ORR catalysis, hydrogen evolution reaction (HER) is also important for hydrogen fuel cell broad application. HER is a potentially carbon dioxide emission free route for hydrogen mass production, holds the environmental advantage especially compared to current main industrial hydrogen production routes using natural gas as source. Thus, HER also attracts broad research interests as an electrochemistry catalysis. In my work, octahedral PtNiCu shows significantly improved both activity and stability compared to octahedral PtNi as well as commercial Pt/C for HER catalysis in alkaline electrolyte. The phenomenon can be explained as the addition Cu modified surface d-band structure thus optimized HO binding on catalyst surface, which is an important reaction intermediate for HER in alkaline media. Direct methanol fuel cell holds advantage for powering future portable device due to its high theoretical potential and energy density. However, it is currently limited by the slow kinetics of the anode methanol oxidation reaction (MOR), which is also an electrochemistry catalysis. In my work, stable palladium hydride nanomaterials is developed, which showed large Pd-Pd distance compared to palladium alone. The increased Pd-Pd distance can weaken the binding for carbon monoxide molecules on surface Pd atoms, which is predicted by previous theoretical study and demonstrated experimentally in this work. As a result, palladium hydride nanomaterials show better MOR activity than palladium nanomaterials with same morphology. It is also first time the catalytic characteristic of palladium hydride nanomaterials is reported.

Synthesis of Noble Metal Nanomaterials for Electrochemical Catalysis Application

Synthesis of Noble Metal Nanomaterials for Electrochemical Catalysis Application PDF Author: Zipeng Zhao
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description
Environmental issues have attracted more and more public attention. Fuel cell, which is an energy conversion device, consumes renewable fuel (hydrogen, methanol etc.) and oxygen to produce electricity. It holds broad application potential for future automobile vehicle and portable device. Electrochemistry catalysis plays a key role in fuel cell operation as all energy conversion reactions are based on electrochemistry catalysis. In present hydrogen based proton exchange membrane fuel cell, cathode oxygen reduction reaction (ORR) demands significant larger amount of catalyst than hydrogen oxidation reaction (HOR) at anode because the cathode ORR is six orders magnitude slower than anode HOR. Now days, Platinum is used as catalyst for ORR, the scarcity and precious feature of platinum contributes to the high cost of fuel cell system which is the biggest obstacle for fuel cell broad application. Non-platinum catalyst is under developing but far away from practical requirement. Thus, intensive research is focused on developing new Pt based catalyst with lower Pt loading, higher activity and longer life time. Inspired by ORR study on Pt75Ni25(111) single crystal electrode, my work is focused on developing octahedral PtNi, PtNiCo, and PtNiCu nano structures with exposed {111} facet. I developed a simple method for direct growth of PtNi octahedral nanostructure on carbon support. The advantage of prepared octahedral PtNi catalysts is the good dispersity on carbon support as well as bulk surfactant free surface. In ORR test, the prepared octahedral PtNi/C catalyst demonstrates at least 7.9 times mass activity (ORR activity normalized by Pt mass loading) compared to commercial Pt/C catalyst. The method can also be extended for synthesis of PtNiCo and PtNiCu ternary alloy catalyst. By introducing Co2CO8 as precursor, which can release metallic cobalt during decomposition, cobalt co-reducing challenge during PtNi synthesis can be overcome. Thus, I developed a method for direct growth of PtNiCo ternary alloy catalyst with uniform elemental distribution on carbon support. The ORR test result demonstrates that ORR activity can be optimized by composition tuning for PtNiCo ternary catalyst. It is noted that alloying Pt with transition metal can improve the ORR activity of Pt. The transition metal retention is important for catalyst stability because transition metal content is critical for ORR activity. I find with the present of Cu, octahedral PtNiCu ternary nanostructure can retain more transition metal than octahedral PtNi, leading to the improved activity after catalyst activation and better stability. The PtNiCu shows at least 13.2 times mass activity compared to commercial Pt/C. Furthermore, octahedral PtNiCu shows significantly improved stability (mass activity retention) compared to commercial Pt/C. In addition to ORR catalysis, hydrogen evolution reaction (HER) is also important for hydrogen fuel cell broad application. HER is a potentially carbon dioxide emission free route for hydrogen mass production, holds the environmental advantage especially compared to current main industrial hydrogen production routes using natural gas as source. Thus, HER also attracts broad research interests as an electrochemistry catalysis. In my work, octahedral PtNiCu shows significantly improved both activity and stability compared to octahedral PtNi as well as commercial Pt/C for HER catalysis in alkaline electrolyte. The phenomenon can be explained as the addition Cu modified surface d-band structure thus optimized HO binding on catalyst surface, which is an important reaction intermediate for HER in alkaline media. Direct methanol fuel cell holds advantage for powering future portable device due to its high theoretical potential and energy density. However, it is currently limited by the slow kinetics of the anode methanol oxidation reaction (MOR), which is also an electrochemistry catalysis. In my work, stable palladium hydride nanomaterials is developed, which showed large Pd-Pd distance compared to palladium alone. The increased Pd-Pd distance can weaken the binding for carbon monoxide molecules on surface Pd atoms, which is predicted by previous theoretical study and demonstrated experimentally in this work. As a result, palladium hydride nanomaterials show better MOR activity than palladium nanomaterials with same morphology. It is also first time the catalytic characteristic of palladium hydride nanomaterials is reported.

Controllable Synthesis and Atomic Scale Regulation of Noble Metal Catalysts

Controllable Synthesis and Atomic Scale Regulation of Noble Metal Catalysts PDF Author: Yancai Yao
Publisher: Springer Nature
ISBN: 9811902054
Category : Science
Languages : en
Pages : 129

Get Book Here

Book Description
This book introduces readers to the preparation of metal nanocrystals and its applications. In this book, an important point highlighted is how to design noble metal nanocrystals at the atomic scale for energy conversion and storage. It also focuses on the controllable synthesis of water splitting electrode materials including anodic oxygen evolution reaction (OER) and cathode hydrogen evolution reaction (HER) at the atomic level by defect engineering and synergistic effect. In addition, in-situ technologies and theoretical calculations are utilized to reveal the catalytic mechanisms of catalysts under realistic operating condition. The findings presented not only enrich research in the nano-field, but also support the promotion of national and international cooperation.

Noble Metal-Based Nanocomposites

Noble Metal-Based Nanocomposites PDF Author: Jun Yang
Publisher: John Wiley & Sons
ISBN: 3527344527
Category : Science
Languages : en
Pages : 454

Get Book Here

Book Description
Provides a systematic and coherent picture of the solution-based methods for the preparation of noble metal-based composite nanomaterials, their characterization, and potential applications in electrocatalysis Within the last decade, the development of wet-chemistry methods has led to the blossom of research in composite nanomaterials. However, the design and synthesis of composite nanomaterials with controlled properties remains a significant challenge. This book summarizes the solution-based methods for the preparation of noble metal-based composite nanomaterials. It examines their characterization, as well as their use in electrocatalysis. It also discusses the intrinsic relationship between the catalytic properties and the physical /chemical effects in the composite materials, and offers some perspectives for the future development of metal-based composite nanomaterials. In addition, the book not only provides a systematic and coherent picture of this field, but also inspires rethinking of the current processing technologies. Noble Metal-Based Nanocomposites: Preparation and Applications offers in-depth chapter coverage of ethanol-mediated phase transfer of metal ions and nanoparticles. It presents the full range of nanocomposites consisting of chalcogenide semiconductors and gold, silver sulfide, or other noble metals. It also examines core-shell structured cadmium selenide-platinum nanocomposites; Pt-containing Ag2S-noble metal nanocomposites for direct methanol fuel cells operated at high fuel concentrations; and nanocomposites consisting of metal oxides and noble metals. In addition, the book looks at scientific issues derived from noble metal-based nanocomposites. -Covers all of the preparations of noble metal-based nanocomposites and their numerous applications -Highlights some of the recent breakthroughs in the design, engineering, and applications of noble metal-based nanocomposites -Appeals to a wide range audience, especially researchers in the areas of catalysis, chemistry, chemical engineering, materials synthesis and characterization, and fuel cell Noble Metal-Based Nanocomposites: Preparation and Applications is an excellent book for inorganic chemists, materials scientists, catalytic chemists, chemical engineers, and those interested in the subject.

Metallic Nanostructures

Metallic Nanostructures PDF Author: Yujie Xiong
Publisher: Springer
ISBN: 3319113046
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
This book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.

Synthesis and Study of Noble Metal Nanoparticles

Synthesis and Study of Noble Metal Nanoparticles PDF Author: Niti Garg
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications

Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications PDF Author: Wei Xia
Publisher: Springer
ISBN: 9811068119
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.

Nanomaterials for Fuel Cell Catalysis

Nanomaterials for Fuel Cell Catalysis PDF Author: Kenneth I. Ozoemena
Publisher: Springer
ISBN: 3319299301
Category : Science
Languages : en
Pages : 583

Get Book Here

Book Description
Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.

Emerging Nanomaterials for Catalysis and Sensor Applications

Emerging Nanomaterials for Catalysis and Sensor Applications PDF Author: Anitha Varghese
Publisher: CRC Press
ISBN: 100082425X
Category : Science
Languages : en
Pages : 437

Get Book Here

Book Description
This book reviews emerging nanomaterials in catalysis and sensors. The catalysis section covers the role of nano-photocatalysts in organic synthesis and health care application, oxidation and sulphoxidation reactions, liquid phase oxidation, hydrogen evolution and environmental remediation. It highlights the correlation of surface properties and catalytic activity of the mesoporous materials. The sensor section discusses the fabrication and development of various electrochemical, chemical, and biosensors. Features: Combines catalysis and sensor applications of nanomaterials, including detailed synthesis techniques of these materials. Explores methods of designing, engineering, and fabricating nanomaterials. Covers material efficiency, their detection limit for sensing different analytes and other properties of the materials. Discusses sustainability of nano materials in the industrial sector. Includes case studies to address the challenges faced by research and development sectors. This book is aimed at researchers and graduate students in Chemical Engineering, Nanochemistry, Water Treatment Engineering and Labs, Industries, Research Labs in Catalysis and Sensors, Environmental Engineering, and Process Engineering.

Nanoparticles in Catalysis

Nanoparticles in Catalysis PDF Author: Karine Philippot
Publisher: John Wiley & Sons
ISBN: 3527821759
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.

Nanoscale Materials in Water Purification

Nanoscale Materials in Water Purification PDF Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0128139277
Category : Science
Languages : en
Pages : 892

Get Book Here

Book Description
Novel nanoscale materials are now an essential part of meeting the current and future needs for clean water, and are at the heart of the development of novel technologies to desalinate water. The unique properties of nanomaterials and their convergence with current treatment technologies present great opportunities to revolutionize water and wastewater treatment. Nanoscale Materials for Water Purification brings together sustainable solutions using novel nanomaterials to alleviate the physical effects of water scarcity. This book covers a wide range of nanomaterials, including noble metal nanoparticles, magnetic nanoparticles, dendrimers, bioactive nanoparticles, polysaccharidebased nanoparticles, nanocatalysts, and redox nanoparticles for water purification. Significant properties and characterization methods of nanomaterials such as surface morphology, mechanical properties, and adsorption capacities are also investigated Explains how the unique properties of a range of nanomaterials makes them important water purification agents Shows how the use of nanotechnology can help create cheaper, more reliable, less energy-intensive, more environmentally friendly water purification techniques Includes case studies to show how nanotechnology has successfully been integrated into water purification system design