Synthesis and Reactivity of Ruthenium and Platinum Complexes with Non-dative Heteroatomic Ligands: Studies of Carbon-hydrogen Bond Activation

Synthesis and Reactivity of Ruthenium and Platinum Complexes with Non-dative Heteroatomic Ligands: Studies of Carbon-hydrogen Bond Activation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Several ruthenium complexes with non-dative heteroatomic ligands were prepared and fully characterized, including TpRu(PMe3)2X (X = OH, OPh, OMe, SH; Tp = hydridotris(pyrazolyl)borate). At elevated temperatures (90 °C -- 130 °C), complexes of the type TpRu(PMe3)2X (X = OH, OPh, Me, Ph or NHPh) undergo regioselective HD exchange with deuterated arenes. In addition, for X = OH or NHPh, HD exchange occurs at hydroxo and anilido ligands, respectively. For X = OH, OPh, Me, Ph or NHPh, isotopic exchange occurs at the Tp 4-positions with only minimal deuterium incorporation at the Tp 3- or 5-positions. TpRu(PMe3)2Cl, TpRu(PMe3)2OTf (OTf = trifluoromethanesulfonate) and TpRu(PMe3)2SH do not initiate HD exchange in C6D6 after extended periods of time at elevated temperatures. Mechanistic studies indicate that the likely pathway for the HD exchange involves ligand dissociation (PMe3 or NCMe), Ru-mediated activation of an aromatic C-D bond, and deuteration of basic heteroatomic ligand (hydroxo or anilido) or Tp positions via intermolecular D+ transfer. The Ru(II) complexes TpRu(PMe3)2OR (R = H or Ph) react with excess phenylacetylene at elevated temperatures to produce the phenylacetylide complex TpRu(PMe3)2(CðCPh). Kinetic studies indicate that the reaction of TpRu(PMe3)2OH and phenylacetylene likely proceeds through a pathway that involves TpRu(PMe3)2OTf as a catalyst. The reaction of TpRu(PMe3)2OH with 1,4-cyclohexadiene at elevated temperature forms benzene and TpRu(PMe3)2H, while TpRu(PMe3)2OPh does not react with 1,4-cyclohexadiene even after 20 days at 85 °C. The paramagnetic Ru(III) complex [TpRu(PMe3)2OH][OTf] is formed upon single-electron oxidation of TpRu(PMe3)2OH with AgOTf. Reactivity studies suggest that [TpRu(PMe3)2OH][OTf] initiates reactions, including hydrogen atom abstraction, with C-H bonds that have bond dissociation energy d"82 kcalD ol. Experimentally, the O-H bond strength of the Ru(II).

Synthesis and Reactivity of Ruthenium and Platinum Complexes with Non-dative Heteroatomic Ligands: Studies of Carbon-hydrogen Bond Activation

Synthesis and Reactivity of Ruthenium and Platinum Complexes with Non-dative Heteroatomic Ligands: Studies of Carbon-hydrogen Bond Activation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Several ruthenium complexes with non-dative heteroatomic ligands were prepared and fully characterized, including TpRu(PMe3)2X (X = OH, OPh, OMe, SH; Tp = hydridotris(pyrazolyl)borate). At elevated temperatures (90 °C -- 130 °C), complexes of the type TpRu(PMe3)2X (X = OH, OPh, Me, Ph or NHPh) undergo regioselective HD exchange with deuterated arenes. In addition, for X = OH or NHPh, HD exchange occurs at hydroxo and anilido ligands, respectively. For X = OH, OPh, Me, Ph or NHPh, isotopic exchange occurs at the Tp 4-positions with only minimal deuterium incorporation at the Tp 3- or 5-positions. TpRu(PMe3)2Cl, TpRu(PMe3)2OTf (OTf = trifluoromethanesulfonate) and TpRu(PMe3)2SH do not initiate HD exchange in C6D6 after extended periods of time at elevated temperatures. Mechanistic studies indicate that the likely pathway for the HD exchange involves ligand dissociation (PMe3 or NCMe), Ru-mediated activation of an aromatic C-D bond, and deuteration of basic heteroatomic ligand (hydroxo or anilido) or Tp positions via intermolecular D+ transfer. The Ru(II) complexes TpRu(PMe3)2OR (R = H or Ph) react with excess phenylacetylene at elevated temperatures to produce the phenylacetylide complex TpRu(PMe3)2(CðCPh). Kinetic studies indicate that the reaction of TpRu(PMe3)2OH and phenylacetylene likely proceeds through a pathway that involves TpRu(PMe3)2OTf as a catalyst. The reaction of TpRu(PMe3)2OH with 1,4-cyclohexadiene at elevated temperature forms benzene and TpRu(PMe3)2H, while TpRu(PMe3)2OPh does not react with 1,4-cyclohexadiene even after 20 days at 85 °C. The paramagnetic Ru(III) complex [TpRu(PMe3)2OH][OTf] is formed upon single-electron oxidation of TpRu(PMe3)2OH with AgOTf. Reactivity studies suggest that [TpRu(PMe3)2OH][OTf] initiates reactions, including hydrogen atom abstraction, with C-H bonds that have bond dissociation energy d"82 kcalD ol. Experimentally, the O-H bond strength of the Ru(II).

Synthesis and Reactivity of Ruthenium and Platinum Complexes with Non-dative Heteroatomic Ligands

Synthesis and Reactivity of Ruthenium and Platinum Complexes with Non-dative Heteroatomic Ligands PDF Author: Yuee Feng
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description
Keywords: non-dative heteroatomic ligands, hydrogen atom abstraction, deprotonation, C-H activation, platinum, ruthenium, organometallic.

Synthesis and Reactivity Or Ruthenium(II) and Platinum(IV) Complexes

Synthesis and Reactivity Or Ruthenium(II) and Platinum(IV) Complexes PDF Author: Taisuke Sumiyoshi
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
Keywords: ruthenium, platinum, non-dative heteroatomic ligand.

Synthesis and Characterization of Ruthenium(II) and Platinum(IV) Complexes with Anionic Heteroatomic Ligands

Synthesis and Characterization of Ruthenium(II) and Platinum(IV) Complexes with Anionic Heteroatomic Ligands PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Isolated and fully characterized complexes of late transition metals in low oxidation states possessing amido and alkoxo ligands are relatively rare. These ligands often exhibit nucleophilic and/or basic reactivity. This reactivity is due, at least in part, to the disruption of ligand to metal à â'Ơ-bonding. Reports of early transition metals with low d-electron counts with imido ligands facilitating C-H activation suggest that if later transition metals with amido or aryloxo ligands can be isolated, C-H activation reactivity may be observed. Ruthenium(II) complexes that catalyze the H/D exchange of N-H and O-H protons at anilido and hydroxo ligands, respectively, with deuterated solvents have been reported, and studies of related systems could shed significant light on C-H activation in these types of reactions. Observing changes in the rate of C-H activation based on specific changes to transition metal complexes could give insight into the creation of highly active C-H activation catalysts. Presented here are synthetic efforts toward late transition metal complexes with formally anionic heteroatomic ligands. The synthesis and initial characterization of [EpRu(Cl)(PPh3)(NCMe)][Cl], [EpRu(py)2Cl][Cl], [EpRu(py)2Cl][Cl], [EpRu(OHMe)(PMe3)(Cl)][BArÃØâ'Ơâ"Ø4] are reported {Ep = 1,1,1-tris(pyrazolyl)ethane, py = N-pyridine, ArÃØâ'Ơâ"Ø = 3,5-(CF3)-C6H3}. The lack of solubility yielded these complexes ineffective for further synthetic manipulation. Additionally presented is the synthesis and characterization of (tbpy)Pt(Me)2(I)2 and (tbpy)Pt(Me)(NHPh)(I)2 (tbpy = 4,4ÃØâ'Ơâ"Ø-tert-butyl-2,2ÃØâ'Ơâ"Ø-bipyridine). Attempted syntheses of (tbpy)Pt(NHPh)2(I)2 and (tbpy)Pt(Cl)(NHPh)(I)2 are also reported. Initial reactivity of (tbpy)Pt(Me)2(I)2 and the decomposition of (tbpy)Pt(Me)(NHPh)(I)2 are further re.

Synthesis and Reactivity of Ruthenium and Platinum Amido and Carbene Complexes: Application Toward Carbon-Nitrogen Bond Forming Reactions

Synthesis and Reactivity of Ruthenium and Platinum Amido and Carbene Complexes: Application Toward Carbon-Nitrogen Bond Forming Reactions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Ru carbene complexes have been investigated for potential application toward carbon-nitrogen bond forming and breaking reactions. The reactivity of Grubbs-type olefin metathesis catalysts (Cl)2(L)(L')Ru=CHPh (L = L' = PCy3 or PPh3; L = PCy3 and L' = H2MesNHC) has been studied with cyclic and acyclic imines. The Ru benzylidene complex (Cl)2(PCy3)2Ru=CHPh undergoes a ligand exchange reaction with 1-pyrroline at room temperature, and oligomerizes 1-pyrroline at 90 oC. The low molecular weight poly(1-pyrroline) has been isolated and characterized. The Ru benzylidene complex has no reactivity toward acyclic imine C=N bonds, but reacts with enamine C=C bonds that form through tautomerization of imines. The Ru amido complexes, (PCP)Ru(CO)(NHPh) and (PCP)Ru(CO)(NHPh)(PMe3) (PCP = 2,6-(CH2P-t-Bu2)C6H3), have been synthesized and characterized. Reaction of (PCP)Ru(CO)(NHPh)(PMe3) with acetonitrile produces the amidinate complex (PCP)Ru(CO)(NHC(Me)NPh). Kinetic studies have demonstrated the formation of the amidinate complex occurs through dissociation of the PMe3 ligand, coordination of MeCN, and intramolecular nucleophilic attack of the amido ligand toward MeCN. The intramolecular nucleophilic attack reaction has been extensively studied with aromatic nitriles, carbodiimides, isocyanates, carboxamides and aldehydes. Reaction of (PCP)Ru(CO)(NHC(Me)NPh) with pentafluorobenzonitrile results in formation of a new amidinate complex (PCP)Ru(CO)(NHC(C6F5)NPh). The complex (PCP)Ru(CO)(NHC(C6F5)NPh) can initiate a C-F bond cleavage reaction of C6F5CN with ortho regioselectivity in the presence of ROH (R = H or Me). Reaction of five-coordinate complex (PCP)Ru(CO)(OTf) (OTf = OSO2CF3) with NaBAr'4 (Ar' = 3,5-(CF3)2C6H3) under different conditions results in formation of [(PCP)Ru(CO)(ClCH2Cl)][BAr'4], [(PCP)Ru(CO)(N2)][BAr'4] or [(PCP)Ru(CO)(FC6H5)][BAr'4]. Calculations have confirmed that the possible four-coordinate Ru complex with double agostic interactions has a higher ground state.

Synthesis AndRreactivity of Copper(I), Copper(II), Platinum(II) and Platinum(IV) Complexes with Non-dative Heteroatomic Ligands

Synthesis AndRreactivity of Copper(I), Copper(II), Platinum(II) and Platinum(IV) Complexes with Non-dative Heteroatomic Ligands PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Examples of late transition metal complexes with amido, alkoxo and sulfido ligands are relatively rare in part due to enhanced reactivity based on nucleophilicity and basicity of the heteroatomic ligand (X). The highly nucleophilic and basic character of formally anionic X ligands coordinated to metal centers with low oxidation states is attributable to the disruption of ligand-to-metal pi-bonding. Examples of common reactivity for these systems include nucleophilic addition reactions, insertions of unsaturated substrates, acid/base chemistry with acidic C-H bonds and C-H activation reactions with aromatic substrates. In addition to fundamental reactivity studies, these complexes also offer opportunities for incorporation into catalytic processes. Late transition metal complexes with non-dative X ligands have been implicated in several C-X bond forming reactions and have been demonstrated to activate non-polar substrates. Thus, in order to advance the understanding of these reactive systems and to exploit the prospects for synthetic applications toward small molecule transformations, further study is warranted. Presented herein is the study of (IPr)Cu(NR2), (IPr)Cu(OR) and (IPr)Cu(SR) {IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene} complexes in the catalytic hydroamination of electron-deficient olefins toward regioselective formation of C-N, C-O and C-S bonds. The substrate scope encompasses alkyl and aryl amines, including primary and secondary variants, as well as alcohols and thiols. Olefins with cyano, acyl, and ester functionalities and vinylarenes are reactive. In a demonstration of potential application, the hydroamination of p-nitrostyrene with N-methylbenzylamine by (IPr)Cu(NHPh) provides a straight-forward single-step route to an anti-arrhythmic agent. Mechanistic studies are consistent with a reaction pathway that involves intermolecular nucleophilic addition of the Cu-amido to free olefin. In an effort to obtain more active catalyst systems that.

Synthesis and Characterization of Ruthenium(II) and Platinum(IV) Complexes with Anionic Heteroatomic Ligands

Synthesis and Characterization of Ruthenium(II) and Platinum(IV) Complexes with Anionic Heteroatomic Ligands PDF Author: Joshua Taylor Gurkin
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
Keywords: platinum(IV), ruthenium(II), C-H activation, pyrazolyl alkanes.

Ruthenium in Organic Synthesis

Ruthenium in Organic Synthesis PDF Author: Shun-Ichi Murahashi
Publisher: John Wiley & Sons
ISBN: 3527605797
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
In this comprehensive book, one of the leading experts, Shun-Ichi Murahashi, presents all the important facets of modern synthetic chemistry using Ruthenium, ranging from hydrogenation to metathesis. In 14 contributions, written by an international authorship, readers will find all the information they need about this fascinating and extraordinary chemistry. The result is a high quality information source and a indispensable reading for everyone working in organometallic chemistry. From the contents: Introduction (S.-I. Murahashi) Hydrogenation and Transfer Hydrogenation (M. Kitamura and R. Noyori) Oxidations (S.-I. Murahashi and N. Komiya) Carbon-Carbon Bond Formations via Ruthenacycle Intermediates (K. Itoh) Carbon-Carbon Bond Formation via pi-Allylruthenium Intermediates (T. Mitsudo) Olefin Metathesis (R. H. Grubbs) Cyclopropanation (H. Nishiyama) Nucleophilic Addition to Alkynes and Reactions via Vinylidene Intermediates (P. Dixneuf) Reactions via C-H Activation (N. Chatani) Lewis Acid Reactions (E. P. Kundig) Reactions with CO and CO2 (T. Mitsudo) Isomerization of Organic Substrates Catalyzed by Ruthenium Complexes (H. Suzuki) Radical Reactions (H. Nagashima) Bond Cleavage Reactions (S. Komiya)

Synthesis and Reactivity of Compounds Containing Ruthenium-carbon, -nitrogen, and -oxygen Bonds

Synthesis and Reactivity of Compounds Containing Ruthenium-carbon, -nitrogen, and -oxygen Bonds PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 417

Get Book Here

Book Description
The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe3)4Ru(X)(Y) and (DMPM)2Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe3)4Ru(Ph)(Me) or (PMe3)4Ru(Ph)2 leads to the ruthenium benzyne complex (PMe3)4Ru([eta]2-C6H4) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe3)4Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

Synthesis and Technique in Inorganic Chemistry

Synthesis and Technique in Inorganic Chemistry PDF Author: Gregory S. Girolami
Publisher: University Science Books
ISBN: 9780935702484
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
Previously by Angelici, this laboratory manual for an upper-level undergraduate or graduate course in inorganic synthesis has for many years been the standard in the field. In this newly revised third edition, the manual has been extensively updated to reflect new developments in inorganic chemistry. Twenty-three experiments are divided into five sections: solid state chemistry, main group chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry. The included experiments are safe, have been thoroughly tested to ensure reproducibility, are illustrative of modern issues in inorganic chemistry, and are capable of being performed in one or two laboratory periods of three or four hours. Because facilities vary from school to school, the authors have included a broad range of experiments to help provide a meaningful course in almost any academic setting. Each clearly written & illustrated experiment begins with an introduction that hig! hlights the theme of the experiment, often including a discussion of a particular characterization method that will be used, followed by the experimental procedure, a set of problems, a listing of suggested Independent Studies, and literature references.