Author: Christophe Gol
Publisher: World Scientific
ISBN: 9810205899
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book concentrates mainly on the theorem of existence of periodic orbits for higher dimensional analogs of Twist maps. The setting is that of a discrete variational calculus and the techniques involve Conley-Zehnder-Morse Theory. They give rise to the concept of ghost tori which are of interest in the dimension 2 case (ghost circles). The debate is oriented somewhat toward the open problem of finding orbits of all (in particular, irrational) rotation vectors.
Symplectic Twist Maps
Author: Christophe Gol
Publisher: World Scientific
ISBN: 9810205899
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book concentrates mainly on the theorem of existence of periodic orbits for higher dimensional analogs of Twist maps. The setting is that of a discrete variational calculus and the techniques involve Conley-Zehnder-Morse Theory. They give rise to the concept of ghost tori which are of interest in the dimension 2 case (ghost circles). The debate is oriented somewhat toward the open problem of finding orbits of all (in particular, irrational) rotation vectors.
Publisher: World Scientific
ISBN: 9810205899
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book concentrates mainly on the theorem of existence of periodic orbits for higher dimensional analogs of Twist maps. The setting is that of a discrete variational calculus and the techniques involve Conley-Zehnder-Morse Theory. They give rise to the concept of ghost tori which are of interest in the dimension 2 case (ghost circles). The debate is oriented somewhat toward the open problem of finding orbits of all (in particular, irrational) rotation vectors.
Symplectic Twist Maps
Author: Christophe Golé
Publisher: World Scientific
ISBN: 9812810765
Category : Mathematics
Languages : en
Pages : 325
Book Description
0. Introduction. 1. Fall from paradise. 2. Billiards and broken geodesies. 3. An ancestor of symplectic topology -- 1. Twist maps of the annulus. 4. Monotone twist maps of the annulus. 5. Generating functions and variational setting. 6. Examples. 7. The Poincare-Birkhoff theorem -- 2. The Aubry-Mather theorem. 8. Introduction. 9. Cyclically ordered sequences and orbits. 10. Minimizing orbits. 11. CO orbits of all rotation numbers. 12. Aubry-Mather sets -- 3. Ghost circles. 14. Gradient flow of the action. 15. The gradient flow and the Aubry-Mather theorem. 16. Ghost circles. 17. Construction of ghost circles. 18. Construction of disjoint ghost circles. 19. Proof of lemma 18.5. 20. Proof of theorem 18.1. 21. Remarks and applications. 22. Proofs of monotonicity and of the Sturmian lemma -- 4. Symplectic twist maps. 23. Symplectic twist maps of T[symbol] x IR[symbol]. 24. Examples. 25. More on generating functions. 2.6. Symplectic twist maps on general cotangent bundles of compact manifolds -- 5. Periodic orbits for symplectic twist maps of T[symbol] x IR[symbol]. 27. Presentation of the results. 28. Finite dimensional variational setting. 29. Second variation and nondegenerate periodic orbits. 30. The coercive case. 31. Asymptotically linear systems. 32. Ghost tori. 33. Hyperbolicity Vs. action minimizers -- 6. Invariant manifolds. 34. The theory of Kolmogorov-Arnold-Moser. 35. Properties of invariant tori. 36. (Un)stable manifolds and heteroclinic orbits. 37. Instability, transport and diffusion -- 7. Hamiltonian systems vs. twist maps. 38. Case study: The geodesic flow. 39. Decomposition of Hamiltonian maps into twist maps. 40. Return maps in Hamiltonian systems. 41. Suspension of symplectic twist maps by Hamiltonian flows -- 8. Periodic orbits for Hamiltonian systems. 42. Periodic orbits in the cotangent of the n-torus. 43. Periodic orbits in general cotangent spaces. 44. Linking of spheres -- 9. Generalizations of the Aubry-Mather theorem. 45. Theory for functions on lattices and PDE's. 46. Monotone recurrence relationst. 47. Anti-integrable limit. 48. Mather's theory of minimal measures. 49. The case of hyperbolic manifolds. 50. Concluding remarks -- 10. Generating phases and symplectic topology. 51. Chaperon's method and the theorem Of Conley-Zehnder. 52. Generating phases and symplectic geometry.
Publisher: World Scientific
ISBN: 9812810765
Category : Mathematics
Languages : en
Pages : 325
Book Description
0. Introduction. 1. Fall from paradise. 2. Billiards and broken geodesies. 3. An ancestor of symplectic topology -- 1. Twist maps of the annulus. 4. Monotone twist maps of the annulus. 5. Generating functions and variational setting. 6. Examples. 7. The Poincare-Birkhoff theorem -- 2. The Aubry-Mather theorem. 8. Introduction. 9. Cyclically ordered sequences and orbits. 10. Minimizing orbits. 11. CO orbits of all rotation numbers. 12. Aubry-Mather sets -- 3. Ghost circles. 14. Gradient flow of the action. 15. The gradient flow and the Aubry-Mather theorem. 16. Ghost circles. 17. Construction of ghost circles. 18. Construction of disjoint ghost circles. 19. Proof of lemma 18.5. 20. Proof of theorem 18.1. 21. Remarks and applications. 22. Proofs of monotonicity and of the Sturmian lemma -- 4. Symplectic twist maps. 23. Symplectic twist maps of T[symbol] x IR[symbol]. 24. Examples. 25. More on generating functions. 2.6. Symplectic twist maps on general cotangent bundles of compact manifolds -- 5. Periodic orbits for symplectic twist maps of T[symbol] x IR[symbol]. 27. Presentation of the results. 28. Finite dimensional variational setting. 29. Second variation and nondegenerate periodic orbits. 30. The coercive case. 31. Asymptotically linear systems. 32. Ghost tori. 33. Hyperbolicity Vs. action minimizers -- 6. Invariant manifolds. 34. The theory of Kolmogorov-Arnold-Moser. 35. Properties of invariant tori. 36. (Un)stable manifolds and heteroclinic orbits. 37. Instability, transport and diffusion -- 7. Hamiltonian systems vs. twist maps. 38. Case study: The geodesic flow. 39. Decomposition of Hamiltonian maps into twist maps. 40. Return maps in Hamiltonian systems. 41. Suspension of symplectic twist maps by Hamiltonian flows -- 8. Periodic orbits for Hamiltonian systems. 42. Periodic orbits in the cotangent of the n-torus. 43. Periodic orbits in general cotangent spaces. 44. Linking of spheres -- 9. Generalizations of the Aubry-Mather theorem. 45. Theory for functions on lattices and PDE's. 46. Monotone recurrence relationst. 47. Anti-integrable limit. 48. Mather's theory of minimal measures. 49. The case of hyperbolic manifolds. 50. Concluding remarks -- 10. Generating phases and symplectic topology. 51. Chaperon's method and the theorem Of Conley-Zehnder. 52. Generating phases and symplectic geometry.
Hamiltonian Dynamical Systems
Author: H.S. Dumas
Publisher: Springer Science & Business Media
ISBN: 1461384486
Category : Mathematics
Languages : en
Pages : 392
Book Description
From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.
Publisher: Springer Science & Business Media
ISBN: 1461384486
Category : Mathematics
Languages : en
Pages : 392
Book Description
From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Author: Kenneth Meyer
Publisher: Springer Science & Business Media
ISBN: 0387097244
Category : Mathematics
Languages : en
Pages : 404
Book Description
Arising from a graduate course taught to math and engineering students, this text provides a systematic grounding in the theory of Hamiltonian systems, as well as introducing the theory of integrals and reduction. A number of other topics are covered too.
Publisher: Springer Science & Business Media
ISBN: 0387097244
Category : Mathematics
Languages : en
Pages : 404
Book Description
Arising from a graduate course taught to math and engineering students, this text provides a systematic grounding in the theory of Hamiltonian systems, as well as introducing the theory of integrals and reduction. A number of other topics are covered too.
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Hamiltonian Systems with Three or More Degrees of Freedom
Author: Carles Simó
Publisher: Springer Science & Business Media
ISBN: 940114673X
Category : Mathematics
Languages : en
Pages : 681
Book Description
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
Publisher: Springer Science & Business Media
ISBN: 940114673X
Category : Mathematics
Languages : en
Pages : 681
Book Description
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
Twist Mappings and Their Applications
Author: Richard McGehee
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Elementary Symplectic Topology and Mechanics
Author: Franco Cardin
Publisher: Springer
ISBN: 3319110268
Category : Science
Languages : en
Pages : 237
Book Description
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Publisher: Springer
ISBN: 3319110268
Category : Science
Languages : en
Pages : 237
Book Description
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Hamiltonian Systems And Celestial Mechanics
Author: Ernesto A Lacomba
Publisher: World Scientific
ISBN: 9814553166
Category :
Languages : en
Pages : 218
Book Description
This volume puts together several important lectures on the Hamiltonian Systems and Celestial Mechanics to form a comprehensive and authoritative collection of works on the subject. The papers presented in this volume are an outgrowth of the lectures that took place during the 'International Symposium on Hamiltonian Systems and Celestial Mechanics', which was held at the CIMAT (Centro de Investigacion en Matematicas, Guanajuato, Mexico) from September 30 to October 4, 1991. In general, the lectures explored the subject of the Hamiltonian Dynamics and Celestial Mechanics and emphasized its relationship with several aspects of topology, mechanics and dynamical systems.
Publisher: World Scientific
ISBN: 9814553166
Category :
Languages : en
Pages : 218
Book Description
This volume puts together several important lectures on the Hamiltonian Systems and Celestial Mechanics to form a comprehensive and authoritative collection of works on the subject. The papers presented in this volume are an outgrowth of the lectures that took place during the 'International Symposium on Hamiltonian Systems and Celestial Mechanics', which was held at the CIMAT (Centro de Investigacion en Matematicas, Guanajuato, Mexico) from September 30 to October 4, 1991. In general, the lectures explored the subject of the Hamiltonian Dynamics and Celestial Mechanics and emphasized its relationship with several aspects of topology, mechanics and dynamical systems.
Mechanics Day
Author: W. F. Shadwick
Publisher: American Mathematical Soc.
ISBN: 0821802615
Category : Mathematics
Languages : en
Pages : 271
Book Description
This volume presents the proceedings of a workshop held at The Fields Institute in June 1992 both as a commemoration of the 25th anniversary of the publication of "Foundations of Mechanics" by Ralph Abraham and Jerrold Marsden and as a celebration of Marsden's 50th birthday. The publication of that first edition marked a period of remarkable resurgence in all aspects of mechanics, which has continued through the publication of the second edition in 1978, deeply nourished by contacts with a variety of areas of mathematics, including topology, differential geometry, Lie theory, and partial diffe.
Publisher: American Mathematical Soc.
ISBN: 0821802615
Category : Mathematics
Languages : en
Pages : 271
Book Description
This volume presents the proceedings of a workshop held at The Fields Institute in June 1992 both as a commemoration of the 25th anniversary of the publication of "Foundations of Mechanics" by Ralph Abraham and Jerrold Marsden and as a celebration of Marsden's 50th birthday. The publication of that first edition marked a period of remarkable resurgence in all aspects of mechanics, which has continued through the publication of the second edition in 1978, deeply nourished by contacts with a variety of areas of mathematics, including topology, differential geometry, Lie theory, and partial diffe.