The Geometry of the Group of Symplectic Diffeomorphism

The Geometry of the Group of Symplectic Diffeomorphism PDF Author: Leonid Polterovich
Publisher: Birkhäuser
ISBN: 3034882998
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.

The Geometry of the Group of Symplectic Diffeomorphism

The Geometry of the Group of Symplectic Diffeomorphism PDF Author: Leonid Polterovich
Publisher: Birkhäuser
ISBN: 3034882998
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
The group of Hamiltonian diffeomorphisms Ham(M, 0) of a symplectic mani fold (M, 0) plays a fundamental role both in geometry and classical mechanics. For a geometer, at least under some assumptions on the manifold M, this is just the connected component of the identity in the group of all symplectic diffeomorphisms. From the viewpoint of mechanics, Ham(M,O) is the group of all admissible motions. What is the minimal amount of energy required in order to generate a given Hamiltonian diffeomorphism I? An attempt to formalize and answer this natural question has led H. Hofer [HI] (1990) to a remarkable discovery. It turns out that the solution of this variational problem can be interpreted as a geometric quantity, namely as the distance between I and the identity transformation. Moreover this distance is associated to a canonical biinvariant metric on Ham(M, 0). Since Hofer's work this new ge ometry has been intensively studied in the framework of modern symplectic topology. In the present book I will describe some of these developments. Hofer's geometry enables us to study various notions and problems which come from the familiar finite dimensional geometry in the context of the group of Hamiltonian diffeomorphisms. They turn out to be very different from the usual circle of problems considered in symplectic topology and thus extend significantly our vision of the symplectic world.

An Introduction to Symplectic Geometry

An Introduction to Symplectic Geometry PDF Author: Rolf Berndt
Publisher: American Mathematical Soc.
ISBN: 9780821820568
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Symplectic Groups

Symplectic Groups PDF Author: Onorato Timothy O'Meara
Publisher: American Mathematical Soc.
ISBN: 0821815164
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
Based on lectures given at the University of Notre Dame, 1974-75.

Simple Groups of Lie Type

Simple Groups of Lie Type PDF Author: Roger W. Carter
Publisher: John Wiley & Sons
ISBN: 9780471506836
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
Now available in paperback--the standard introduction to the theory of simple groups of Lie type. In 1955, Chevalley showed how to construct analogues of the complex simple Lie groups over arbitrary fields. The present work presents the basic results in the structure theory of Chevalley groups and their twisted analogues. Carter looks at groups of automorphisms of Lie algebras, makes good use of Weyl group (also discussing Lie groups over finite fields), and develops the theory of Chevalley and Steinberg groups in the general context of groups with a (B,N)-pair. This new edition contains a corrected proof of the simplicity of twisted groups, a completed list of sporadic simple groups in the final chapter and a few smaller amendments; otherwise, this work remains the classic piece of exposition it was when it first appeared in 1971.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Characters of Solvable Groups

Characters of Solvable Groups PDF Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 1470434857
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
This book, which can be considered as a sequel of the author's famous book Character Theory of Finite Groups, concerns the character theory of finite solvable groups and other groups that have an abundance of normal subgroups. It is subdivided into three parts: -theory, character correspondences, and M-groups. The -theory section contains an exposition of D. Gajendragadkar's -special characters, and it includes various extensions, generalizations, and applications of his work. The character correspondences section proves the McKay character counting conjecture and the Alperin weight conjecture for solvable groups, and it constructs a canonical McKay bijection for odd-order groups. In addition to a review of some basic material on M-groups, the third section contains an exposition of the use of symplectic modules for studying M-groups. In particular, an accessible presentation of E. C. Dade's deep results on monomial characters of odd prime-power degree is included. Very little of this material has previously appeared in book form, and much of it is based on the author's research. By reading a clean and accessible presentation written by the leading expert in the field, researchers and graduate students will be inspired to learn and work in this area that has fascinated the author for decades.

The Orthogonal and Symplectic Groups

The Orthogonal and Symplectic Groups PDF Author: Francis Dominic Murnaghan
Publisher:
ISBN:
Category : Continuous groups
Languages : en
Pages : 168

Get Book Here

Book Description


Introduction to Orthogonal, Symplectic, and Unitary Representations of Finite Groups

Introduction to Orthogonal, Symplectic, and Unitary Representations of Finite Groups PDF Author: Carl R. Riehm
Publisher: American Mathematical Soc.
ISBN: 0821885952
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description


Symplectic Geometry and Quantum Mechanics

Symplectic Geometry and Quantum Mechanics PDF Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764375752
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.

Theory of Lie Groups (PMS-8), Volume 8

Theory of Lie Groups (PMS-8), Volume 8 PDF Author: Claude Chevalley
Publisher: Princeton University Press
ISBN: 1400883857
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.