Symplectic Actions of $2$-Tori on $4$-Manifolds

Symplectic Actions of $2$-Tori on $4$-Manifolds PDF Author: Alvaro Pelayo
Publisher: American Mathematical Soc.
ISBN: 0821847139
Category : Mathematics
Languages : en
Pages : 96

Get Book Here

Book Description
In this paper the author classifies symplectic actions of $2$-tori on compact connected symplectic $4$-manifolds, up to equivariant symplectomorphisms. This extends results of Atiyah, Guillemin-Sternberg, Delzant and Benoist. The classification is in terms of a collection of invariants of the topology of the manifold, of the torus action and of the symplectic form. The author constructs explicit models of such symplectic manifolds with torus actions, defined in terms of these invariants.

The Topology of Torus Actions on Symplectic Manifolds

The Topology of Torus Actions on Symplectic Manifolds PDF Author: Michèle Audin
Publisher: Birkhäuser
ISBN: 3034872216
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds", published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.

Symplectic Actions of 2-tori on 4-manifolds

Symplectic Actions of 2-tori on 4-manifolds PDF Author: Alvaro Pelayo
Publisher:
ISBN: 9781470405731
Category : MATHEMATICS
Languages : en
Pages : 81

Get Book Here

Book Description


Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Symplectic Torus Actions

Symplectic Torus Actions PDF Author: Alvaro Pelayo
Publisher:
ISBN:
Category :
Languages : en
Pages : 574

Get Book Here

Book Description


Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees

Quasi-Actions on Trees II: Finite Depth Bass-Serre Trees PDF Author: Lee Mosher
Publisher: American Mathematical Soc.
ISBN: 0821847120
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description
This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if $\mathcal{G}$ is a finite graph of coarse Poincare duality groups, then any finitely generated group quasi-isometric to the fundamental group of $\mathcal{G}$ is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserve the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group $\mathcal{G}_v$ which is an $n$-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of $\mathcal{G}_v$ is a graph $\epsilon_v$ that describes the pattern in which the codimension 1 edge groups incident to $\mathcal{G}_v$ are crossed by other edge groups incident to $\mathcal{G}_v$, and the crossing graph condition requires that $\epsilon_v$ be connected or empty.

Banach Algebras on Semigroups and on Their Compactifications

Banach Algebras on Semigroups and on Their Compactifications PDF Author: Harold G. Dales
Publisher: American Mathematical Soc.
ISBN: 0821847759
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
"Volume 205, number 966 (end of volume)."

New Results in the Theory of Topological Classification of Integrable Systems

New Results in the Theory of Topological Classification of Integrable Systems PDF Author: A. T. Fomenko
Publisher: American Mathematical Soc.
ISBN: 9780821804803
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
This collection contains new results in the topological classification of integrable Hamiltonian systems. Recently, this subject has been applied to interesting problems in geometry and topology, classical mechanics, mathematical physics, and computer geometry. This new stage of development of the theory is reflected in this collection. Among the topics covered are: classification of some types of singularities of the moment map (including non-Bott types), computation of topological invariants for integrable systems describing various problems in mechanics and mathematical physics, construction of a theory of bordisms of integrable systems, and solution of some problems of symplectic topology arising naturally within this theory. A list of unsolved problems allows young mathematicians to become quickly involved in this active area of research.

Introduction to Symplectic Topology

Introduction to Symplectic Topology PDF Author: Dusa McDuff
Publisher: Oxford University Press
ISBN: 0192514016
Category : Mathematics
Languages : en
Pages : 632

Get Book Here

Book Description
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.

Erdos Space and Homeomorphism Groups of Manifolds

Erdos Space and Homeomorphism Groups of Manifolds PDF Author: Jan Jakobus Dijkstra
Publisher: American Mathematical Soc.
ISBN: 0821846353
Category : Mathematics
Languages : en
Pages : 76

Get Book Here

Book Description
Let M be either a topological manifold, a Hilbert cube manifold, or a Menger manifold and let D be an arbitrary countable dense subset of M. Consider the topological group H(M,D) which consists of all autohomeomorphisms of M that map D onto itself equipped with the compact-open topology. We present a complete solution to the topological classification problem for H(M,D) as follows. If M is a one-dimensional topological manifold, then we proved in an earlier paper that H(M,D) is homeomorphic to Qω, the countable power of the space of rational numbers. In all other cases we find in this paper that H(M,D) is homeomorphic to the famed Erdős space E E, which consists of the vectors in Hilbert space l2 with rational coordinates. We obtain the second result by developing topological characterizations of Erdős space.