Symmetry Groups and Their Applications

Symmetry Groups and Their Applications PDF Author:
Publisher: Academic Press
ISBN: 0080873650
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
Symmetry Groups and Their Applications

Symmetry Groups and Their Applications

Symmetry Groups and Their Applications PDF Author:
Publisher: Academic Press
ISBN: 0080873650
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
Symmetry Groups and Their Applications

Symmetry

Symmetry PDF Author: R. McWeeny
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

The Symmetric Group

The Symmetric Group PDF Author: Bruce E. Sagan
Publisher: Springer Science & Business Media
ISBN: 1475768044
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This book brings together many of the important results in this field. From the reviews: ""A classic gets even better....The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." --ZENTRALBLATT MATH

Point Group Symmetry Applications

Point Group Symmetry Applications PDF Author: Philip H. Butler
Publisher: Springer Science & Business Media
ISBN: 1461331412
Category : Technology & Engineering
Languages : en
Pages : 564

Get Book Here

Book Description
The mathematical apparatus of group theory is a means of exploring and exploiting physical and algebraic structure in physical and chemical prob lems. The existence of structure in the physical processes leads to structure in the solutions. For group theory to be useful this structure need not be an exact symmetry, although as examples of exact symmetries we have that the identity of electrons leads to permutation symmetries in many-electron wave functions, the spatial structure of crystals leads to the Bloch theory of crystal eigenfunctions, and the rotational invariance of the hydrogenic Hamiltonian leads to its factorization into angular and radial parts. In the 1930's Wigner extended what is known to mathematicians as the theory of group representations and the theory of group algebras to study the coupling coefficients of angular momentum, relating various properties of the coefficients to the properties of the abstract group of rotations in 3-space. In 1949 Racah, in a paper on rare earth spectra, showed that similar coefficients occur in other situations. Immediately a number of studies of the coefficients were begun, notably by Jahn, with his applications in nuclear physics. In the years since then a large number of physicists and chemists have added to the development of a general theory of the coefficients, or have produced specialized tables for a specific application. Applications now range from high-energy physics to biology.

Groups and Symmetry

Groups and Symmetry PDF Author: Mark A. Armstrong
Publisher: Springer Science & Business Media
ISBN: 1475740344
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.

Groups and Symmetry

Groups and Symmetry PDF Author: Bijan Davvaz
Publisher: Springer Nature
ISBN: 9811661081
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. This is the second book of the set of two books on groups theory. Topics on linear transformation and linear groups, group actions on sets, Sylow’s theorem, simple groups, products of groups, normal series, free groups, platonic solids, Frieze and wallpaper symmetry groups and characters of groups have been discussed in depth. Covering all major topics, this book is targeted to advanced undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.

Chemical Applications of Symmetry and Group Theory

Chemical Applications of Symmetry and Group Theory PDF Author: Rakshit Ameta
Publisher: CRC Press
ISBN: 1771883995
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
As the structure and behavior of molecules and crystals depend on their different symmetries, group theory becomes an essential tool in many important areas of chemistry. It is a quite powerful theoretical tool to predict many basic as well as some characteristic properties of molecules. Whereas quantum mechanics provide solutions of some chemical problems on the basis of complicated mathematics, group theory puts forward these solutions in a very simplified and fascinating manner. Group theory has been successfully applied to many chemical problems. Students and teachers of chemical sciences have an invisible fear from this subject due to the difficulty with the mathematical jugglery. An active sixth dimension is required to understand the concept as well as to apply it to solve the problems of chemistry. This book avoids mathematical complications and presents group theory so that it is accessible to students as well as faculty and researchers. Chemical Applications of Symmetry and Group Theory discusses different applications to chemical problems with suitable examples. The book develops the concept of symmetry and group theory, representation of group, its applications to I.R. and Raman spectroscopy, U.V spectroscopy, bonding theories like molecular orbital theory, ligand field theory, hybridization, and more. Figures are included so that reader can visualize the symmetry, symmetry elements, and operations.

Group Theory

Group Theory PDF Author: Mildred S. Dresselhaus
Publisher: Springer Science & Business Media
ISBN: 3540328998
Category : Science
Languages : en
Pages : 576

Get Book Here

Book Description
This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.

Molecular Symmetry and Group Theory

Molecular Symmetry and Group Theory PDF Author: Alan Vincent
Publisher: John Wiley & Sons
ISBN: 1118723384
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
This substantially revised and expanded new edition of the bestselling textbook, addresses the difficulties that can arise with the mathematics that underpins the study of symmetry, and acknowledges that group theory can be a complex concept for students to grasp. Written in a clear, concise manner, the author introduces a series of programmes that help students learn at their own pace and enable to them understand the subject fully. Readers are taken through a series of carefully constructed exercises, designed to simplify the mathematics and give them a full understanding of how this relates to the chemistry. This second edition contains a new chapter on the projection operator method. This is used to calculate the form of the normal modes of vibration of a molecule and the normalised wave functions of hybrid orbitals or molecular orbitals. The features of this book include: * A concise, gentle introduction to symmetry and group theory * Takes a programmed learning approach * New material on projection operators, and the calcultaion of normal modes of vibration and normalised wave functions of orbitals This book is suitable for all students of chemistry taking a first course in symmetry and group theory.

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations PDF Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524

Get Book Here

Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.