Author: James (Jong Hyuk) Park
Publisher: MDPI
ISBN: 3039366424
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis.
Symmetry-Adapted Machine Learning for Information Security
Author: James (Jong Hyuk) Park
Publisher: MDPI
ISBN: 3039366424
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis.
Publisher: MDPI
ISBN: 3039366424
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis.
Computational Methods in Science and Technology
Author: Sukhpreet Kaur
Publisher: CRC Press
ISBN: 1040260578
Category : Technology & Engineering
Languages : en
Pages : 595
Book Description
This book contains the proceedings of the 4TH International Conference on Computational Methods in Science and Technology (ICCMST 2024). The proceedings explores research and innovation in the field of Internet of things, Cloud Computing, Machine Learning, Networks, System Design and Methodologies, Big Data Analytics and Applications, ICT for Sustainable Environment, Artificial Intelligence and it provides real time assistance and security for advanced stage learners, researchers and academicians has been presented. This will be a valuable read to researchers, academicians, undergraduate students, postgraduate students, and professionals within the fields of Computer Science, Sustainability and Artificial Intelligence.
Publisher: CRC Press
ISBN: 1040260578
Category : Technology & Engineering
Languages : en
Pages : 595
Book Description
This book contains the proceedings of the 4TH International Conference on Computational Methods in Science and Technology (ICCMST 2024). The proceedings explores research and innovation in the field of Internet of things, Cloud Computing, Machine Learning, Networks, System Design and Methodologies, Big Data Analytics and Applications, ICT for Sustainable Environment, Artificial Intelligence and it provides real time assistance and security for advanced stage learners, researchers and academicians has been presented. This will be a valuable read to researchers, academicians, undergraduate students, postgraduate students, and professionals within the fields of Computer Science, Sustainability and Artificial Intelligence.
Leveraging Artificial Intelligence (AI) Competencies for Next-Generation Cybersecurity Solutions
Author: Pethuru Raj
Publisher: CRC Press
ISBN: 1040026060
Category : Computers
Languages : en
Pages : 580
Book Description
Modern enterprises are facing growing cybersecurity issues due to the massive volume of security-related data they generate over time. AI systems can be developed to resolve a range of these issues with comparative ease. This new book describes the various types of cybersecurity problems faced by businesses and how advanced AI algorithms and models can help eliminate them. With chapters from industry and security experts, this volume discribes the various types of cybersecurity problems faced by businesses and how advanced AI algorithms and models can help elimintate them. With chapters from industry and security experts, this volume discusses the many new and emerging AI technologies and approaches that can be harnessed to combat cyberattacks, including big data analytics techniques, deep neural networks, cloud computer networks, convolutional neural networks, IoT edge devices, machine learning approaches, deep learning, blockchain technology, convolutional neural networks, and more. Some unique features of this book include: Detailed overview of various security analytics techniques and tools Comprehensive descriptions of the emerging and evolving aspects of artificial intelligence (AI) technologies Industry case studies for practical comprehension and application This book, Leveraging the Artificial Intelligence Competencies for Next-Generation Cybersecurity Solutions, illustrates how AI is a futuristic and flexible technology that can be effectively used for tackling the growing menace of cybercriminals. It clearly demystifies the unique contributions of AI algorithms, models, frameworks, and libraries in nullifying the cyberattacks. The volume will be a valuable resource for research students, scholars, academic professors, business executives, security architects, and consultants in the IT industry.
Publisher: CRC Press
ISBN: 1040026060
Category : Computers
Languages : en
Pages : 580
Book Description
Modern enterprises are facing growing cybersecurity issues due to the massive volume of security-related data they generate over time. AI systems can be developed to resolve a range of these issues with comparative ease. This new book describes the various types of cybersecurity problems faced by businesses and how advanced AI algorithms and models can help eliminate them. With chapters from industry and security experts, this volume discribes the various types of cybersecurity problems faced by businesses and how advanced AI algorithms and models can help elimintate them. With chapters from industry and security experts, this volume discusses the many new and emerging AI technologies and approaches that can be harnessed to combat cyberattacks, including big data analytics techniques, deep neural networks, cloud computer networks, convolutional neural networks, IoT edge devices, machine learning approaches, deep learning, blockchain technology, convolutional neural networks, and more. Some unique features of this book include: Detailed overview of various security analytics techniques and tools Comprehensive descriptions of the emerging and evolving aspects of artificial intelligence (AI) technologies Industry case studies for practical comprehension and application This book, Leveraging the Artificial Intelligence Competencies for Next-Generation Cybersecurity Solutions, illustrates how AI is a futuristic and flexible technology that can be effectively used for tackling the growing menace of cybercriminals. It clearly demystifies the unique contributions of AI algorithms, models, frameworks, and libraries in nullifying the cyberattacks. The volume will be a valuable resource for research students, scholars, academic professors, business executives, security architects, and consultants in the IT industry.
Symmetry-Adapted Machine Learning for Information Security
Author: James Park
Publisher:
ISBN: 9783039366439
Category :
Languages : en
Pages : 202
Book Description
Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis.
Publisher:
ISBN: 9783039366439
Category :
Languages : en
Pages : 202
Book Description
Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis.
Information Security
Author: Elias Athanasopoulos
Publisher: Springer Nature
ISBN: 3031491874
Category : Computers
Languages : en
Pages : 599
Book Description
This book constitutes the proceedings of the 26th International Conference on Information Security, ISC 2023, which took place in Groningen, The Netherlands, in November 2023. The 29 full papers presented in this volume were carefully reviewed and selected from 90 submissions. The contributions were organized in topical sections as follows: privacy; intrusion detection and systems; machine learning; web security; mobile security and trusted execution; post-quantum cryptography; multiparty computation; symmetric cryptography; key management; functional and updatable encryption; and signatures, hashes, and cryptanalysis.
Publisher: Springer Nature
ISBN: 3031491874
Category : Computers
Languages : en
Pages : 599
Book Description
This book constitutes the proceedings of the 26th International Conference on Information Security, ISC 2023, which took place in Groningen, The Netherlands, in November 2023. The 29 full papers presented in this volume were carefully reviewed and selected from 90 submissions. The contributions were organized in topical sections as follows: privacy; intrusion detection and systems; machine learning; web security; mobile security and trusted execution; post-quantum cryptography; multiparty computation; symmetric cryptography; key management; functional and updatable encryption; and signatures, hashes, and cryptanalysis.
Artificial Intelligence and Data Mining Approaches in Security Frameworks
Author: Neeraj Bhargava
Publisher: John Wiley & Sons
ISBN: 1119760402
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
ARTIFICIAL INTELLIGENCE AND DATA MINING IN SECURITY FRAMEWORKS Written and edited by a team of experts in the field, this outstanding new volume offers solutions to the problems of security, outlining the concepts behind allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to artificial intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalized security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and data mining and several other computing technologies to deploy such a system in an effective manner. This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice. This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library. This groundbreaking new volume: Clarifies the understanding of certain key mechanisms of technology helpful in the use of artificial intelligence and data mining in security frameworks Covers practical approaches to the problems engineers face in working in this field, focusing on the applications used every day Contains numerous examples, offering critical solutions to engineers and scientists Presents these new applications of AI and data mining that are of prime importance to human civilization as a whole
Publisher: John Wiley & Sons
ISBN: 1119760402
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
ARTIFICIAL INTELLIGENCE AND DATA MINING IN SECURITY FRAMEWORKS Written and edited by a team of experts in the field, this outstanding new volume offers solutions to the problems of security, outlining the concepts behind allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to artificial intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalized security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and data mining and several other computing technologies to deploy such a system in an effective manner. This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice. This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library. This groundbreaking new volume: Clarifies the understanding of certain key mechanisms of technology helpful in the use of artificial intelligence and data mining in security frameworks Covers practical approaches to the problems engineers face in working in this field, focusing on the applications used every day Contains numerous examples, offering critical solutions to engineers and scientists Presents these new applications of AI and data mining that are of prime importance to human civilization as a whole
Machine Learning for Cyber Security
Author: Yuan Xu
Publisher: Springer Nature
ISBN: 3031200969
Category : Computers
Languages : en
Pages : 694
Book Description
The three-volume proceedings set LNCS 13655,13656 and 13657 constitutes the refereedproceedings of the 4th International Conference on Machine Learning for Cyber Security, ML4CS 2022, which taking place during December 2–4, 2022, held in Guangzhou, China. The 100 full papers and 46 short papers were included in these proceedings were carefully reviewed and selected from 367 submissions.
Publisher: Springer Nature
ISBN: 3031200969
Category : Computers
Languages : en
Pages : 694
Book Description
The three-volume proceedings set LNCS 13655,13656 and 13657 constitutes the refereedproceedings of the 4th International Conference on Machine Learning for Cyber Security, ML4CS 2022, which taking place during December 2–4, 2022, held in Guangzhou, China. The 100 full papers and 46 short papers were included in these proceedings were carefully reviewed and selected from 367 submissions.
Deep Learning Applications for Cyber Security
Author: Mamoun Alazab
Publisher: Springer
ISBN: 3030130576
Category : Computers
Languages : en
Pages : 260
Book Description
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Publisher: Springer
ISBN: 3030130576
Category : Computers
Languages : en
Pages : 260
Book Description
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Handbook of Research on Machine and Deep Learning Applications for Cyber Security
Author: Ganapathi, Padmavathi
Publisher: IGI Global
ISBN: 1522596135
Category : Computers
Languages : en
Pages : 506
Book Description
As the advancement of technology continues, cyber security continues to play a significant role in todays world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.
Publisher: IGI Global
ISBN: 1522596135
Category : Computers
Languages : en
Pages : 506
Book Description
As the advancement of technology continues, cyber security continues to play a significant role in todays world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.
Machine Learning for Cyber Security
Author: Xiaofeng Chen
Publisher: Springer Nature
ISBN: 3030306194
Category : Computers
Languages : en
Pages : 411
Book Description
This book constitutes the proceedings of the Second International Conference on Machine Learning for Cyber Security, ML4CS 2019, held in Xi’an, China in September 2019. The 23 revised full papers and 3 short papers presented were carefully reviewed and selected from 70 submissions. The papers detail all aspects of machine learning in network infrastructure security, in network security detections and in application software security.
Publisher: Springer Nature
ISBN: 3030306194
Category : Computers
Languages : en
Pages : 411
Book Description
This book constitutes the proceedings of the Second International Conference on Machine Learning for Cyber Security, ML4CS 2019, held in Xi’an, China in September 2019. The 23 revised full papers and 3 short papers presented were carefully reviewed and selected from 70 submissions. The papers detail all aspects of machine learning in network infrastructure security, in network security detections and in application software security.