Deep Learning with Swift for TensorFlow

Deep Learning with Swift for TensorFlow PDF Author: Rahul Bhalley
Publisher: Apress
ISBN: 9781484263297
Category : Computers
Languages : en
Pages : 287

Get Book Here

Book Description
Discover more insight about deep learning and how to work with Swift for TensorFlow to develop intelligent apps. TensorFlow was designed for easy adoption by iOS programmers working in Swift. This book covers the established and tested concepts and ties them to modern Swift programming and applicable use in developing for iOS. Using illustrative examples, the book starts off by introducing you to basic machine learning concepts along with code snippets in Swift for TensorFlow.. Fundamentals of neural networks required to understand today’s deep learning research will be covered and put in the context of working in the Swift language with the goal of developing primarily for Apple’s mobile ecosystem. Other important topics covered include computation graphs, loss functions, optimization techniques, regulazrizing nueral networks, recurrent neural networks—such as those used in Siri and Google Translate; and convolutional neural networks. You'll also learn to reuse pre-trained neural networks and work with generative models. Finally, developing and building in security to models is addressed. Swift code will be provided throughout the book to keep the concepts grounded in application within Apple’s frameworks. What You'll Learn • Write machine learning code in Swift • Run neural networks in Apple environments • Apply fundamental deep learning concepts to mobile app development Who This Book Is For Programmers familiar with Swift and the basics of AI

Convolutional Neural Networks with Swift for Tensorflow

Convolutional Neural Networks with Swift for Tensorflow PDF Author: Brett Koonce
Publisher:
ISBN: 9781484261699
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.

Practical Artificial Intelligence with Swift

Practical Artificial Intelligence with Swift PDF Author: Mars Geldard
Publisher: O'Reilly Media
ISBN: 1492044784
Category : Computers
Languages : en
Pages : 518

Get Book Here

Book Description
Create and implement AI-based features in your Swift apps for iOS, macOS, tvOS, and watchOS. With this practical book, programmers and developers of all kinds will find a one-stop shop for AI and machine learning with Swift. Taking a task-based approach, you’ll learn how to build features that use powerful AI features to identify images, make predictions, generate content, recommend things, and more. AI is increasingly essential for every developer—and you don’t need to be a data scientist or mathematician to take advantage of it in your apps. Explore Swift-based AI and ML techniques for building applications. Learn where and how AI-driven features make sense. Inspect tools such as Apple’s Python-powered Turi Create and Google’s Swift for TensorFlow to train and build models. I: Fundamentals and Tools—Learn AI basics, our task-based approach, and discover how to build or find a dataset. II: Task Based AI—Build vision, audio, text, motion, and augmentation-related features; learn how to convert preexisting models. III: Beyond—Discover the theory behind task-based practice, explore AI and ML methods, and learn how you can build it all from scratch... if you want to

Machine Learning with Swift

Machine Learning with Swift PDF Author: Oleksandr Sosnovshchenko
Publisher: Packt Publishing Ltd
ISBN: 1787123529
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
Leverage the power of machine learning and Swift programming to build intelligent iOS applications with ease Key Features Implement effective machine learning solutions for your iOS applications Use Swift and Core ML to build and deploy popular machine learning models Develop neural networks for natural language processing and computer vision Book Description Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves. What you will learn Learn rapid model prototyping with Python and Swift Deploy pre-trained models to iOS using Core ML Find hidden patterns in the data using unsupervised learning Get a deeper understanding of the clustering techniques Learn modern compact architectures of neural networks for iOS devices Train neural networks for image processing and natural language processing Who this book is for iOS developers who wish to create smarter iOS applications using the power of machine learning will find this book to be useful. This book will also benefit data science professionals who are interested in performing machine learning on mobile devices. Familiarity with Swift programming is all you need to get started with this book.

Learning Core Audio

Learning Core Audio PDF Author: Chris Adamson
Publisher: Addison-Wesley
ISBN: 0321636961
Category : Computers
Languages : en
Pages : 332

Get Book Here

Book Description
Audio can affect the human brain in the most powerful and profound ways. Using Apple’s Core Audio, you can leverage all that power in your own Mac and iOS software, implementing features ranging from audio capture to real-time effects, MP3 playback to virtual instruments, web radio to VoIP support. The most sophisticated audio programming system ever created, Core Audio is not simple. In Learning Core Audio, top Mac programming author Chris Adamson and legendary Core Audio expert Kevin Avila fully explain this challenging framework, enabling experienced Mac or iOS programmers to make the most of it. In plain language, Adamson and Avila explain what Core Audio can do, how it works, and how it builds on the natural phenomena of sound and the human language of audio. Next, using crystal-clear code examples, they guide you through recording, playback, format conversion, Audio Units, 3D audio MIDI connectivity, and overcoming unique challenges of Core Audio programming for iOS. Coverage includes: mastering Core Audio’s surprising style and conventions; recording and playback with Audio Queue; synthesizing audio; perform effects on audio streams; capturing from the mic; mixing multiple streams; managing file streams; converting formats; creating 3D positional audio; using Core MIDI on the Mac; leveraging your Cocoa and Objective-C expertise in Core Audio’s C-based environment, and much more. When you’ve mastered the “black arts” of Core Audio, you can do some serious magic. This book will transform you from an acolyte into a true Core Audio wizard.

Machine Learning by Tutorials (Second Edition)

Machine Learning by Tutorials (Second Edition) PDF Author: raywenderlich Tutorial Team
Publisher:
ISBN: 9781942878933
Category :
Languages : en
Pages :

Get Book Here

Book Description
Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app!

Learn Computer Science with Swift

Learn Computer Science with Swift PDF Author: Jesse Feiler
Publisher: Apress
ISBN: 1484230663
Category : Computers
Languages : en
Pages : 309

Get Book Here

Book Description
Master the basics of solving logic puzzles, and creating algorithms using Swift on Apple platforms. This book is based on the curriculum currently being used in common computer classes. You’ll learn to automate algorithmic processes that scale using Swift in the context of iOS, macOS, tvOS, and watchOS. Begin by understanding how to think computationally: to formulate a computational problem and recognize patterns and ways to validate it. Then jump ahead past the abstractions and conceptual work into using code snippets to build frameworks and write code using Xcode and Swift. Once you have frameworks in place, you’ll learn to use algorithms and structure data. Finally, you’ll see how to bring people into what you’ve built through a useable UI and how UI and code relate. What You'll Learn Recognize patterns and use abstractions Build code into reusable frameworks Manage code and share version control Solve logic puzzles Who This Book Is For Young professionals interested in learning computer science from an Apple platform standpoint.

Practical Artificial Intelligence with Swift

Practical Artificial Intelligence with Swift PDF Author: Mars Geldard
Publisher: "O'Reilly Media, Inc."
ISBN: 1492044768
Category : Computers
Languages : en
Pages : 531

Get Book Here

Book Description
Create and implement AI-based features in your Swift apps for iOS, macOS, tvOS, and watchOS. With this practical book, programmers and developers of all kinds will find a one-stop shop for AI and machine learning with Swift. Taking a task-based approach, you’ll learn how to build features that use powerful AI features to identify images, make predictions, generate content, recommend things, and more. AI is increasingly essential for every developer—and you don’t need to be a data scientist or mathematician to take advantage of it in your apps. Explore Swift-based AI and ML techniques for building applications. Learn where and how AI-driven features make sense. Inspect tools such as Apple’s Python-powered Turi Create and Google’s Swift for TensorFlow to train and build models. I: Fundamentals and Tools—Learn AI basics, our task-based approach, and discover how to build or find a dataset. II: Task Based AI—Build vision, audio, text, motion, and augmentation-related features; learn how to convert preexisting models. III: Beyond—Discover the theory behind task-based practice, explore AI and ML methods, and learn how you can build it all from scratch... if you want to

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch PDF Author: Jeremy Howard
Publisher: O'Reilly Media
ISBN: 1492045497
Category : Computers
Languages : en
Pages : 624

Get Book Here

Book Description
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow PDF Author: Thushan Ganegedara
Publisher: Packt Publishing Ltd
ISBN: 1788477758
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.