Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation PDF Author: Xin-She Yang
Publisher: Newnes
ISBN: 0124051774
Category : Computers
Languages : en
Pages : 445

Get Book Here

Book Description
Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.

Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation PDF Author: Xin-She Yang
Publisher: Newnes
ISBN: 0124051774
Category : Computers
Languages : en
Pages : 445

Get Book Here

Book Description
Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. - Focuses on the introduction and analysis of key algorithms - Includes case studies for real-world applications - Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.

Bio-Inspired Computation in Telecommunications

Bio-Inspired Computation in Telecommunications PDF Author: Xin-She Yang
Publisher: Morgan Kaufmann
ISBN: 0128017430
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

Nature-Inspired Computation and Swarm Intelligence

Nature-Inspired Computation and Swarm Intelligence PDF Author: Xin-She Yang
Publisher: Academic Press
ISBN: 0128197145
Category : Technology & Engineering
Languages : en
Pages : 442

Get Book Here

Book Description
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.

Recent Advances in Swarm Intelligence and Evolutionary Computation

Recent Advances in Swarm Intelligence and Evolutionary Computation PDF Author: Xin-She Yang
Publisher: Springer
ISBN: 331913826X
Category : Technology & Engineering
Languages : en
Pages : 295

Get Book Here

Book Description
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.

Bio-Inspired Artificial Intelligence

Bio-Inspired Artificial Intelligence PDF Author: Dario Floreano
Publisher: MIT Press
ISBN: 0262547732
Category : Computers
Languages : en
Pages : 674

Get Book Here

Book Description
A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.

Nature-Inspired Computing and Optimization

Nature-Inspired Computing and Optimization PDF Author: Srikanta Patnaik
Publisher: Springer
ISBN: 3319509209
Category : Technology & Engineering
Languages : en
Pages : 506

Get Book Here

Book Description
The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.

Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation PDF Author: Momin Jamil
Publisher: Elsevier Inc. Chapters
ISBN: 0128068892
Category : Computers
Languages : en
Pages : 34

Get Book Here

Book Description
Random walks play an important and central role in metaheuristic and stochastic optimization algorithms. The two key components of the search process in metaheuristic algorithms (MAs) are intensification and diversification. The overall efficiency of a metaheuristic optimization algorithm depends on a sound balance between these two components. In MAs, exploration is achieved by randomization in combination with a deterministic procedure. In this way, the newly generated solutions are distributed as diversely as possible in the problem search space. In most of the MAs, randomization is realized using a uniform or Gaussian distribution. However, this is not the only way to achieve randomization. In recent years, the use of Lévy distribution has emerged as an alternative to uniform or Gaussian distributions. In view of these details, this chapter focuses on using Lévy flights (LFs) in the context of global optimization. A survey of the most important MAs using LFs to achieve intensification and diversification for solving global optimization problems is presented. The different components and concepts of Lévy-flight-based MAs are discussed and their similarities and differences are analyzed.

Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation PDF Author: Raha Imanirad
Publisher: Elsevier Inc. Chapters
ISBN: 0128069007
Category : Computers
Languages : en
Pages : 30

Get Book Here

Book Description
In solving many practical mathematical programming applications, it is generally preferable to formulate several quantifiably good alternatives that provide very different approaches to the particular problem. This is because decision-making typically involves complex problems that are riddled with incompatible performance objectives and possess competing design requirements which are very difficult—if not impossible—to quantify and capture at the time that the supporting decision models are constructed. There are invariably unmodeled design issues, not apparent at the time of model construction, which can greatly impact the acceptability of the model’s solutions. Consequently, it is preferable to generate several alternatives that provide multiple, disparate perspectives to the problem. These alternatives should possess near-optimal objective measures with respect to all known modeled objective(s) but be fundamentally different from each other in terms of the system structures characterized by their decision variables. This solution approach is referred to as modeling-to-generate-alternatives (MGA). This chapter provides a synopsis of various MGA techniques and demonstrates how biologically inspired MGA algorithms are particularly efficient at creating multiple solution alternatives that both satisfy required system performance criteria and yet are maximally different in their decision spaces. The efficacy and efficiency of these MGA methods are demonstrated using a number of case studies.

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522507892
Category : Computers
Languages : en
Pages : 1810

Get Book Here

Book Description
As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.

Swarm Intelligence and Bio-Inspired Computation

Swarm Intelligence and Bio-Inspired Computation PDF Author: Simon Fong
Publisher: Elsevier Inc. Chapters
ISBN: 012806904X
Category : Computers
Languages : en
Pages : 25

Get Book Here

Book Description
Data mining has evolved from methods of simple statistical analysis to complex pattern recognition in the past decades. During the progression, the data mining algorithms are modified or extended in order to overcome some specific problems. This chapter discusses about the prospects of improving data mining algorithms by integrating bio-inspired optimization, which has lately captivated much of researchers’ attention. In particular, high dimensionality and the unavailability of the whole data set (as in stream mining) in the training data have known to be two major challenges. We demonstrated that these two challenges, through two small examples such as K-means clustering and time-series classification, can be overcome by integrating data mining and bio-inspired algorithms.