Author: Martin A. Abraham
Publisher: Elsevier
ISBN: 0080481272
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Sustainable development is commonly defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Sustainability in engineering incorporates ethical and social issues into the design of products and processes that will be used to benefit society as a whole. Sustainability Science and Engineering, Volume 1: Defining Principles sets out a series of "Sustainable Engineering Principles" that will help engineers design products and services to meet societal needs with minimal impact on the global ecosystem. Using specific examples and illustrations, the authors cleverly demonstrate opportunities for sustainable engineering, providing readers with valuable insight to applying these principles. This book is ideal for technical and non-technical readers looking to enhance their understanding of the impact of sustainability in a technical society.* Defines the principles of sustainable engineering* Provides specific examples of the application of sustainable engineering in industry* Represents the viewpoints of current leaders in the field and describes future needs in new technologies
Sustainability Science and Engineering
Author: Martin A. Abraham
Publisher: Elsevier
ISBN: 0080481272
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Sustainable development is commonly defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Sustainability in engineering incorporates ethical and social issues into the design of products and processes that will be used to benefit society as a whole. Sustainability Science and Engineering, Volume 1: Defining Principles sets out a series of "Sustainable Engineering Principles" that will help engineers design products and services to meet societal needs with minimal impact on the global ecosystem. Using specific examples and illustrations, the authors cleverly demonstrate opportunities for sustainable engineering, providing readers with valuable insight to applying these principles. This book is ideal for technical and non-technical readers looking to enhance their understanding of the impact of sustainability in a technical society.* Defines the principles of sustainable engineering* Provides specific examples of the application of sustainable engineering in industry* Represents the viewpoints of current leaders in the field and describes future needs in new technologies
Publisher: Elsevier
ISBN: 0080481272
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Sustainable development is commonly defined as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Sustainability in engineering incorporates ethical and social issues into the design of products and processes that will be used to benefit society as a whole. Sustainability Science and Engineering, Volume 1: Defining Principles sets out a series of "Sustainable Engineering Principles" that will help engineers design products and services to meet societal needs with minimal impact on the global ecosystem. Using specific examples and illustrations, the authors cleverly demonstrate opportunities for sustainable engineering, providing readers with valuable insight to applying these principles. This book is ideal for technical and non-technical readers looking to enhance their understanding of the impact of sustainability in a technical society.* Defines the principles of sustainable engineering* Provides specific examples of the application of sustainable engineering in industry* Represents the viewpoints of current leaders in the field and describes future needs in new technologies
Sustainable Design
Author: Daniel A. Vallero
Publisher: John Wiley & Sons
ISBN: 0470130628
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Scientific Principles to Guide Sustainable Design Decisions From thermodynamics to fluid dynamics to computational chemistry, this book sets forth the scientific principles underlying the need for sustainable design, explaining not just the "hows" of sustainable design and green engineering, but also the "whys." Moreover, it provides readers with the scientific principles needed to guide their own sustainable design decisions. Throughout the book, the authors draw from their experience in architecture, civil engineering, environmental engineering, planning, and public policy in order to build an understanding of the interdisciplinary nature of sustainable design. Written to enable readers to take a more scientific approach to sustainable design, the book offers many practical features, including: Case studies presenting the authors' firsthand accounts of actual green projects Lessons learned from Duke University's Smart House Program that demonstrate the concepts and techniques discussed in the book Exercises that encourage readers to use their newfound knowledge to solve green design problems Figures, tables, and sidebars illustrating key concepts and summarizing important points For architects, designers, and engineers, this book enables them to not only implement green design methods, but also to choose these methods based on science. With its many examples, case studies, and exercises, the book is also an ideal textbook for students in civil and environmental engineering, construction, and architectural engineering.
Publisher: John Wiley & Sons
ISBN: 0470130628
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Scientific Principles to Guide Sustainable Design Decisions From thermodynamics to fluid dynamics to computational chemistry, this book sets forth the scientific principles underlying the need for sustainable design, explaining not just the "hows" of sustainable design and green engineering, but also the "whys." Moreover, it provides readers with the scientific principles needed to guide their own sustainable design decisions. Throughout the book, the authors draw from their experience in architecture, civil engineering, environmental engineering, planning, and public policy in order to build an understanding of the interdisciplinary nature of sustainable design. Written to enable readers to take a more scientific approach to sustainable design, the book offers many practical features, including: Case studies presenting the authors' firsthand accounts of actual green projects Lessons learned from Duke University's Smart House Program that demonstrate the concepts and techniques discussed in the book Exercises that encourage readers to use their newfound knowledge to solve green design problems Figures, tables, and sidebars illustrating key concepts and summarizing important points For architects, designers, and engineers, this book enables them to not only implement green design methods, but also to choose these methods based on science. With its many examples, case studies, and exercises, the book is also an ideal textbook for students in civil and environmental engineering, construction, and architectural engineering.
Methods in Sustainability Science
Author: Jingzheng Ren
Publisher: Elsevier
ISBN: 012824240X
Category : Science
Languages : en
Pages : 446
Book Description
Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization presents cutting edge, detailed methodologies needed to create sustainable growth in any field or industry, including life cycle assessments, building design, and energy systems. The book utilized a systematic structured approach to each of the methodologies described in an interdisciplinary way to ensure the methodologies are applicable in the real world, including case studies to demonstrate the methods. The chapters are written by a global team of authors in a variety of sustainability related fields. Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization will provide academics, researchers and practitioners in sustainability, especially environmental science and environmental engineering, with the most recent methodologies needed to maintain a sustainable future. It is also a necessary read for postgraduates in sustainability, as well as academics and researchers in energy and chemical engineering who need to ensure their industrial methodologies are sustainable. - Provides a comprehensive overview of the most recent methodologies in sustainability assessment, prioritization, improvement, design and optimization - Sections are organized in a systematic and logical way to clearly present the most recent methodologies for sustainability and the chapters utilize an interdisciplinary approach that covers all considerations of sustainability - Includes detailed case studies demonstrating the efficacies of the described methods
Publisher: Elsevier
ISBN: 012824240X
Category : Science
Languages : en
Pages : 446
Book Description
Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization presents cutting edge, detailed methodologies needed to create sustainable growth in any field or industry, including life cycle assessments, building design, and energy systems. The book utilized a systematic structured approach to each of the methodologies described in an interdisciplinary way to ensure the methodologies are applicable in the real world, including case studies to demonstrate the methods. The chapters are written by a global team of authors in a variety of sustainability related fields. Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization will provide academics, researchers and practitioners in sustainability, especially environmental science and environmental engineering, with the most recent methodologies needed to maintain a sustainable future. It is also a necessary read for postgraduates in sustainability, as well as academics and researchers in energy and chemical engineering who need to ensure their industrial methodologies are sustainable. - Provides a comprehensive overview of the most recent methodologies in sustainability assessment, prioritization, improvement, design and optimization - Sections are organized in a systematic and logical way to clearly present the most recent methodologies for sustainability and the chapters utilize an interdisciplinary approach that covers all considerations of sustainability - Includes detailed case studies demonstrating the efficacies of the described methods
Integrating Sustainability Thinking in Science and Engineering Curricula
Author: Walter Leal Filho
Publisher: Springer
ISBN: 3319094742
Category : Science
Languages : en
Pages : 617
Book Description
Including considerations of sustainability in universities’ activities has long since become mainstream. However, there is still much to be done with regard to the full integration of sustainability thinking into science and engineering curricula. Among the problems that hinder progress in this field, the lack of sound information on how to actually implement it is prominent. Created in order to address this need, this book presents a wealth of information on innovative approaches, methods and tools that may be helpful in translating sustainability principles into practice.
Publisher: Springer
ISBN: 3319094742
Category : Science
Languages : en
Pages : 617
Book Description
Including considerations of sustainability in universities’ activities has long since become mainstream. However, there is still much to be done with regard to the full integration of sustainability thinking into science and engineering curricula. Among the problems that hinder progress in this field, the lack of sound information on how to actually implement it is prominent. Created in order to address this need, this book presents a wealth of information on innovative approaches, methods and tools that may be helpful in translating sustainability principles into practice.
Urban Engineering for Sustainability
Author: Sybil Derrible
Publisher: MIT Press
ISBN: 0262356759
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
Publisher: MIT Press
ISBN: 0262356759
Category : Political Science
Languages : en
Pages : 657
Book Description
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.
The Principles of Green and Sustainability Science
Author: Adenike A. Akinsemolu
Publisher: Springer Nature
ISBN: 9811524939
Category : Science
Languages : en
Pages : 422
Book Description
This book uses the concept of sustainability in science to address problems afflicting the environment, and to devise measures for improving economies, societies, behaviors, and people. The book pursues a scientific approach, and uses scientific evidence as the basis for achieving sustainability. The key topics addressed include: unemployment, health and disease, unsustainable production, our common future, renewable energies, waste management, environmental ethics, and harmful anthropogenic activities. Whereas past literature has mainly examined sustainability as an environmental issue, this book expands the conversation into various sciences, including mathematics, biology, agriculture, computer science, engineering, and physics, and shows how sustainability could be achieved by uniting these fields. It offers a wealth of information across various disciplines, making it not only an intriguing read but also informative and insightful.
Publisher: Springer Nature
ISBN: 9811524939
Category : Science
Languages : en
Pages : 422
Book Description
This book uses the concept of sustainability in science to address problems afflicting the environment, and to devise measures for improving economies, societies, behaviors, and people. The book pursues a scientific approach, and uses scientific evidence as the basis for achieving sustainability. The key topics addressed include: unemployment, health and disease, unsustainable production, our common future, renewable energies, waste management, environmental ethics, and harmful anthropogenic activities. Whereas past literature has mainly examined sustainability as an environmental issue, this book expands the conversation into various sciences, including mathematics, biology, agriculture, computer science, engineering, and physics, and shows how sustainability could be achieved by uniting these fields. It offers a wealth of information across various disciplines, making it not only an intriguing read but also informative and insightful.
Sustainability Science
Author: Bert de Vries
Publisher: Cambridge University Press
ISBN: 1107005884
Category : Business & Economics
Languages : en
Pages : 609
Book Description
This textbook surveys key issues of sustainability - energy, nature, agro-food, resources, economics - for advanced undergraduate and graduate level courses.
Publisher: Cambridge University Press
ISBN: 1107005884
Category : Business & Economics
Languages : en
Pages : 609
Book Description
This textbook surveys key issues of sustainability - energy, nature, agro-food, resources, economics - for advanced undergraduate and graduate level courses.
Encyclopedia of Sustainability Science and Technology
Author: Robert A. Meyers
Publisher: Springer
ISBN: 9780387894690
Category : Science
Languages : en
Pages : 12555
Book Description
The Encyclopedia of Sustainability Science and Technology (ESST) addresses the grand challenge for science and engineering today. It provides unprecedented, peer-reviewed coverage in more than 550 separate entries comprising 38 topical sections. ESST establishes a foundation for the many sustainability and policy evaluations being performed in institutions worldwide. An indispensable resource for scientists and engineers in developing new technologies and for applying existing technologies to sustainability, the Encyclopedia of Sustainability Science and Technology is presented at the university and professional level needed for scientists, engineers, and their students to support real progress in sustainability science and technology. Although the emphasis is on science and technology rather than policy, the Encyclopedia of Sustainability Science and Technology is also a comprehensive and authoritative resource for policy makers who want to understand the scope of research and development and how these bottom-up innovations map on to the sustainability challenge.
Publisher: Springer
ISBN: 9780387894690
Category : Science
Languages : en
Pages : 12555
Book Description
The Encyclopedia of Sustainability Science and Technology (ESST) addresses the grand challenge for science and engineering today. It provides unprecedented, peer-reviewed coverage in more than 550 separate entries comprising 38 topical sections. ESST establishes a foundation for the many sustainability and policy evaluations being performed in institutions worldwide. An indispensable resource for scientists and engineers in developing new technologies and for applying existing technologies to sustainability, the Encyclopedia of Sustainability Science and Technology is presented at the university and professional level needed for scientists, engineers, and their students to support real progress in sustainability science and technology. Although the emphasis is on science and technology rather than policy, the Encyclopedia of Sustainability Science and Technology is also a comprehensive and authoritative resource for policy makers who want to understand the scope of research and development and how these bottom-up innovations map on to the sustainability challenge.
Framing in Sustainability Science
Author: Takashi Mino
Publisher: Springer Nature
ISBN: 9811390614
Category : Science
Languages : en
Pages : 196
Book Description
This open access book offers both conceptual and empirical descriptions of how to “frame” sustainability challenges. It defines “framing” in the context of sustainability science as the process of identifying subjects, setting boundaries, and defining problems. The chapters are grouped into two sections: a conceptual section and a case section. The conceptual section introduces readers to theories and concepts that can be used to achieve multiple understandings of sustainability; in turn, the case section highlights different ways of comprehending sustainability for researchers, practitioners, and other stakeholders. The book offers diverse illustrations of what sustainability concepts entail, both conceptually and empirically, and will help readers become aware of the implicit framings in sustainability-related discourses. In the extant literature, sustainability challenges such as climate change, sustainable development, and rapid urbanization have largely been treated as “pre-set,” fixed topics, while possible solutions have been discussed intensively. In contrast, this book examines the framings applied to the sustainability challenges themselves, and illustrates the road that led us to the current sustainability discourse.
Publisher: Springer Nature
ISBN: 9811390614
Category : Science
Languages : en
Pages : 196
Book Description
This open access book offers both conceptual and empirical descriptions of how to “frame” sustainability challenges. It defines “framing” in the context of sustainability science as the process of identifying subjects, setting boundaries, and defining problems. The chapters are grouped into two sections: a conceptual section and a case section. The conceptual section introduces readers to theories and concepts that can be used to achieve multiple understandings of sustainability; in turn, the case section highlights different ways of comprehending sustainability for researchers, practitioners, and other stakeholders. The book offers diverse illustrations of what sustainability concepts entail, both conceptually and empirically, and will help readers become aware of the implicit framings in sustainability-related discourses. In the extant literature, sustainability challenges such as climate change, sustainable development, and rapid urbanization have largely been treated as “pre-set,” fixed topics, while possible solutions have been discussed intensively. In contrast, this book examines the framings applied to the sustainability challenges themselves, and illustrates the road that led us to the current sustainability discourse.
Engineering for Sustainability
Author: Gerald Jonker
Publisher: Elsevier
ISBN: 0444538461
Category : Architecture
Languages : en
Pages : 123
Book Description
Preface -- 1. Introduction -- 2. Setting up a design assignment -- 3. Structuring the sustainability context -- 4. Creating design solutions -- 5. Acquiring sustainable design competences.
Publisher: Elsevier
ISBN: 0444538461
Category : Architecture
Languages : en
Pages : 123
Book Description
Preface -- 1. Introduction -- 2. Setting up a design assignment -- 3. Structuring the sustainability context -- 4. Creating design solutions -- 5. Acquiring sustainable design competences.