Author: M. J. Mayo
Publisher: Mrs Proceedings
ISBN:
Category : Science
Languages : en
Pages : 442
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Superplasticity in Metals, Ceramics, and Intermetallics: Volume 196
Superplastic Flow
Author: K.A. Padmanabhan
Publisher: Springer Science & Business Media
ISBN: 366204367X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Superplasticity is the ability of polycrystalline materials under certain conditions to exhibit extreme tensile elongation in a nearly homogeneous/isotropic manner. Historically, this phenomenon was discovered and systematically studied by metallurgists and physicists. They, along with practising engineers, used materials in the superplastic state for materials forming applications. Metallurgists concluded that they had the necessary information on superplasticity and so theoretical studies focussed mostly on understanding the physical and metallurgi cal properties of superplastic materials. Practical applications, in contrast, were led by empirical approaches, rules of thumb and creative design. It has become clear that mathematical models of superplastic deformation as well as analyses for metal working processes that exploit the superplastic state are not adequate. A systematic approach based on the methods of mechanics of solids is likely to prove useful in improving the situation. The present book aims at the following. 1. Outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials. 2. Assess the present level of investigations on the mechanical behaviour of superplastics. 3. Formulate the main issues and challenges in mechanics ofsuperplasticity. 4. Analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics. 5. Review the models of superplastic metal working processes. 6. Indicate with examples new results that may be obtained using the methods of mechanics of solids.
Publisher: Springer Science & Business Media
ISBN: 366204367X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Superplasticity is the ability of polycrystalline materials under certain conditions to exhibit extreme tensile elongation in a nearly homogeneous/isotropic manner. Historically, this phenomenon was discovered and systematically studied by metallurgists and physicists. They, along with practising engineers, used materials in the superplastic state for materials forming applications. Metallurgists concluded that they had the necessary information on superplasticity and so theoretical studies focussed mostly on understanding the physical and metallurgi cal properties of superplastic materials. Practical applications, in contrast, were led by empirical approaches, rules of thumb and creative design. It has become clear that mathematical models of superplastic deformation as well as analyses for metal working processes that exploit the superplastic state are not adequate. A systematic approach based on the methods of mechanics of solids is likely to prove useful in improving the situation. The present book aims at the following. 1. Outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials. 2. Assess the present level of investigations on the mechanical behaviour of superplastics. 3. Formulate the main issues and challenges in mechanics ofsuperplasticity. 4. Analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics. 5. Review the models of superplastic metal working processes. 6. Indicate with examples new results that may be obtained using the methods of mechanics of solids.
Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures
Author: M. Nastasi
Publisher: Springer Science & Business Media
ISBN: 9401117659
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
In an attempt to meet the demand for new ultra-high strength materials, the processing of novel material configurations with unique microstructure is being explored in systems which are further and further from equilibrium. One such class of emerging materials is the so-called nanophased or nanostructured materials. This class of materials includes metals and alloys, ceramics, and polymers characterized by controlled ultra-fine microstructural features in the form oflayered, fibrous, or phase and grain distribution. While it is clear that these materials are in an early stage of development, there is now a sufficient body of literature to fuel discussion of how the mechanical properties and deformation behavior can be controlled through control of the microstructure. This NATO-Advanced Study Institute was convened in order to assess our current state of knowledge in the field of mechanical properties and deformation behavior in materials with ultra fine microstructure, to identify opportunities and needs for further research, and to identify the potential for technological applications. The Institute was the first international scientific meeting devoted to a discussion on the mechanical properties and deformation behavior of materials having grain sizes down to a few nanometers. Included in these discussions were the topics of superplasticity, tribology, and the supermodulus effect. Lectures were also presented which covered a variety of other themes including synthesis, characterization, thermodynamic stability, and general physical properties.
Publisher: Springer Science & Business Media
ISBN: 9401117659
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
In an attempt to meet the demand for new ultra-high strength materials, the processing of novel material configurations with unique microstructure is being explored in systems which are further and further from equilibrium. One such class of emerging materials is the so-called nanophased or nanostructured materials. This class of materials includes metals and alloys, ceramics, and polymers characterized by controlled ultra-fine microstructural features in the form oflayered, fibrous, or phase and grain distribution. While it is clear that these materials are in an early stage of development, there is now a sufficient body of literature to fuel discussion of how the mechanical properties and deformation behavior can be controlled through control of the microstructure. This NATO-Advanced Study Institute was convened in order to assess our current state of knowledge in the field of mechanical properties and deformation behavior in materials with ultra fine microstructure, to identify opportunities and needs for further research, and to identify the potential for technological applications. The Institute was the first international scientific meeting devoted to a discussion on the mechanical properties and deformation behavior of materials having grain sizes down to a few nanometers. Included in these discussions were the topics of superplasticity, tribology, and the supermodulus effect. Lectures were also presented which covered a variety of other themes including synthesis, characterization, thermodynamic stability, and general physical properties.
Superplastic Forming of Advanced Metallic Materials
Author: G Giuliano
Publisher: Elsevier
ISBN: 0857092774
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Ultra fine-grained metals can show exceptional ductility, known as superplasticity, during sheet forming. The higher ductility of superplastic metals makes it possible to form large and complex components in a single operation without joints or rivets. The result is less waste, lower weight and manufacturing costs, high precision and lack of residual stress associated with welding which makes components ideal for aerospace, automotive and other applications. Superplastic forming of advanced metallic materials summarises key recent research on this important process.Part one reviews types of superplastic metals, standards for superplastic forming, processes and equipment. Part two discusses ways of modelling superplastic forming processes whilst the final part of the book considers applications, including superplastic forming of titanium, aluminium and magnesium alloys.With its distinguished editor and international team of contributors, Superplastic forming of advanced metallic materials is a valuable reference for metallurgists and engineers in such sectors as aerospace and automotive engineering.Note: The Publishers wish to point out an error in the authorship of Chapter 3 which was originally listed as: G. Bernhart, Clément Ader Institute, France. The correct authorship is: G Bernhart, P. Lours, T. Cutard, V. Velay, Ecole des Mines Albi, France and F. Nazaret, Aurock, France. The Publishers apologise to the authors for this error. - Reviews types of superplastic metals and standards for superplastic forming - Discusses the modelling of superplastic forming, including mathematical and finite element modelling - Examines various applications, including superplastic forming of titanium, aluminiun and magnesium alloys
Publisher: Elsevier
ISBN: 0857092774
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Ultra fine-grained metals can show exceptional ductility, known as superplasticity, during sheet forming. The higher ductility of superplastic metals makes it possible to form large and complex components in a single operation without joints or rivets. The result is less waste, lower weight and manufacturing costs, high precision and lack of residual stress associated with welding which makes components ideal for aerospace, automotive and other applications. Superplastic forming of advanced metallic materials summarises key recent research on this important process.Part one reviews types of superplastic metals, standards for superplastic forming, processes and equipment. Part two discusses ways of modelling superplastic forming processes whilst the final part of the book considers applications, including superplastic forming of titanium, aluminium and magnesium alloys.With its distinguished editor and international team of contributors, Superplastic forming of advanced metallic materials is a valuable reference for metallurgists and engineers in such sectors as aerospace and automotive engineering.Note: The Publishers wish to point out an error in the authorship of Chapter 3 which was originally listed as: G. Bernhart, Clément Ader Institute, France. The correct authorship is: G Bernhart, P. Lours, T. Cutard, V. Velay, Ecole des Mines Albi, France and F. Nazaret, Aurock, France. The Publishers apologise to the authors for this error. - Reviews types of superplastic metals and standards for superplastic forming - Discusses the modelling of superplastic forming, including mathematical and finite element modelling - Examines various applications, including superplastic forming of titanium, aluminiun and magnesium alloys
Industrial Ceramics
Author:
Publisher:
ISBN:
Category : Ceramic materials
Languages : en
Pages : 264
Book Description
Publisher:
ISBN:
Category : Ceramic materials
Languages : en
Pages : 264
Book Description
Advanced Biomaterials and Biodevices
Author: Ashutosh Tiwari
Publisher: John Wiley & Sons
ISBN: 1118774132
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This cutting-edge book focuses on the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities The design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. When used with highly selective and sensitive biomaterials, cutting-edge biodevices can allow the rapid and accurate diagnosis of disease, creating a platform for research and development, especially in the field of treatment for prognosis and detection of diseases in the early stage. This book emphasizes the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities. The 15 comprehensive chapters written by leading experts cover such topics as: The use of severe plastic deformation technique to enhance the properties of nanostructured metals Descriptions of the different polymers for use in controlled drug release Chitin and chitosan as renewable healthcare biopolymers for biomedical applications Innovated devices such as “label-free biochips” and polymer MEMS Molecular imprinting and nanotechnology Prussian Blue biosensing applications The evaluation of different types of biosensors in terms of their cost effectiveness, selectivity, and sensitivity Stimuli-responsive polypeptide nanocarriers for malignancy therapeutics
Publisher: John Wiley & Sons
ISBN: 1118774132
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This cutting-edge book focuses on the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities The design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. When used with highly selective and sensitive biomaterials, cutting-edge biodevices can allow the rapid and accurate diagnosis of disease, creating a platform for research and development, especially in the field of treatment for prognosis and detection of diseases in the early stage. This book emphasizes the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities. The 15 comprehensive chapters written by leading experts cover such topics as: The use of severe plastic deformation technique to enhance the properties of nanostructured metals Descriptions of the different polymers for use in controlled drug release Chitin and chitosan as renewable healthcare biopolymers for biomedical applications Innovated devices such as “label-free biochips” and polymer MEMS Molecular imprinting and nanotechnology Prussian Blue biosensing applications The evaluation of different types of biosensors in terms of their cost effectiveness, selectivity, and sensitivity Stimuli-responsive polypeptide nanocarriers for malignancy therapeutics
Intermetallic Matrix Composites: Volume 194
Author: D. L. Anton
Publisher: Mrs Proceedings
ISBN:
Category : Science
Languages : en
Pages : 472
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Publisher: Mrs Proceedings
ISBN:
Category : Science
Languages : en
Pages : 472
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Plastic Deformation of Ceramics
Author: R.C. Bradt
Publisher: Springer Science & Business Media
ISBN: 1489914412
Category : Science
Languages : en
Pages : 661
Book Description
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Publisher: Springer Science & Business Media
ISBN: 1489914412
Category : Science
Languages : en
Pages : 661
Book Description
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity.
Plastic Deformation in Nanocrystalline Materials
Author: Mikhail Gutkin
Publisher: Springer Science & Business Media
ISBN: 366209374X
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
It seems there is no special need to comment on the term 'nanostructure' now, when one often meets the 'nano' words not only in scientific journals but even in newspapers. Moreover, today they are even to be heard in TV and radio programmes. In academic science, where the terms 'nanostructure' and 'nan otechnology' have been extremely popular since the early 1990s, they have been successfully extended to the sphere of economics and business, and now to politics. This is quite natural because nanostructures and nanotechnolo gies will surely serve as a basis for the most advanced and highest technology production in the nearest and probably also the remote future. Hence, the struggle to create and occupy its markets is already under way. In this respect, it is of great interest to review data on the dynamics of U. S. Federal Goverment expenditure for nanotechnology [1,2]. In the fiscal years 1997 and 2002, expenditure was approximately US$116 and US$ 697 million, respectively. In the fiscal year 2004, the President's request for US federal in vestment in nanoscale science, engineering and technology is about US$ 849 million [2]. The indicative budget allocated to the Thematic Priority enti tled 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials and new production processes and devices' for the duration 2002- 2006 of the sixth EU Framework Programme for Research and Technological Development is EUR 1300 million [3].
Publisher: Springer Science & Business Media
ISBN: 366209374X
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
It seems there is no special need to comment on the term 'nanostructure' now, when one often meets the 'nano' words not only in scientific journals but even in newspapers. Moreover, today they are even to be heard in TV and radio programmes. In academic science, where the terms 'nanostructure' and 'nan otechnology' have been extremely popular since the early 1990s, they have been successfully extended to the sphere of economics and business, and now to politics. This is quite natural because nanostructures and nanotechnolo gies will surely serve as a basis for the most advanced and highest technology production in the nearest and probably also the remote future. Hence, the struggle to create and occupy its markets is already under way. In this respect, it is of great interest to review data on the dynamics of U. S. Federal Goverment expenditure for nanotechnology [1,2]. In the fiscal years 1997 and 2002, expenditure was approximately US$116 and US$ 697 million, respectively. In the fiscal year 2004, the President's request for US federal in vestment in nanoscale science, engineering and technology is about US$ 849 million [2]. The indicative budget allocated to the Thematic Priority enti tled 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials and new production processes and devices' for the duration 2002- 2006 of the sixth EU Framework Programme for Research and Technological Development is EUR 1300 million [3].
The Fifth Pacific Rim International Conference on Advanced Materials and Processing, November 2-5, 2004, Beijing, China
Author: Z.Y. Zhong
Publisher:
ISBN: 9780878499601
Category : Composite materials
Languages : en
Pages : 888
Book Description
Publisher:
ISBN: 9780878499601
Category : Composite materials
Languages : en
Pages : 888
Book Description