Author: Enno Keßler
Publisher: Springer Nature
ISBN: 3030137589
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1. The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed. The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them. This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.
Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional
Author: Enno Keßler
Publisher: Springer Nature
ISBN: 3030137589
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1. The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed. The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them. This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.
Publisher: Springer Nature
ISBN: 3030137589
Category : Mathematics
Languages : en
Pages : 310
Book Description
This book treats the two-dimensional non-linear supersymmetric sigma model or spinning string from the perspective of supergeometry. The objective is to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1. The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, smooth families of complex manifolds and integration theory are developed. The second part studies uniformization, U(1)-structures and connections on Super Riemann surfaces and shows how the latter can be viewed as extensions of Riemann surfaces by a gravitino field. A natural geometric action functional on super Riemann surfaces is shown to reproduce the action functional of the non-linear supersymmetric sigma model using a component field formalism. The conserved currents of this action can be identified as infinitesimal deformations of the super Riemann surface. This is in surprising analogy to the theory of Riemann surfaces and the harmonic action functional on them. This volume is aimed at both theoretical physicists interested in a careful treatment of the subject and mathematicians who want to become acquainted with the potential applications of this beautiful theory.
Quantum Mathematical Physics
Author: Felix Finster
Publisher: Birkhäuser
ISBN: 331926902X
Category : Science
Languages : en
Pages : 517
Book Description
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Publisher: Birkhäuser
ISBN: 331926902X
Category : Science
Languages : en
Pages : 517
Book Description
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Geometry and Physics
Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 3642005411
Category : Mathematics
Languages : en
Pages : 226
Book Description
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.
Publisher: Springer Science & Business Media
ISBN: 3642005411
Category : Mathematics
Languages : en
Pages : 226
Book Description
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.
The Moduli Space of $N=1$ Superspheres with Tubes and the Sewing Operation
Author: Katrina Barron
Publisher: American Mathematical Soc.
ISBN: 0821832603
Category : Mathematics
Languages : en
Pages : 150
Book Description
Within the framework of complex supergeometry and motivated by two-dimensional genus-zero holomorphic $N = 1$ superconformal field theory, this book defines the moduli space of $N=1$ genus-zero super-Riemann surfaces with oriented and ordered half-infinite tubes, modulo superconformal equivalence.
Publisher: American Mathematical Soc.
ISBN: 0821832603
Category : Mathematics
Languages : en
Pages : 150
Book Description
Within the framework of complex supergeometry and motivated by two-dimensional genus-zero holomorphic $N = 1$ superconformal field theory, this book defines the moduli space of $N=1$ genus-zero super-Riemann surfaces with oriented and ordered half-infinite tubes, modulo superconformal equivalence.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 724
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 724
Book Description
High Energy Physics Index
Author:
Publisher:
ISBN:
Category : Particles (Nuclear physics)
Languages : en
Pages : 624
Book Description
Publisher:
ISBN:
Category : Particles (Nuclear physics)
Languages : en
Pages : 624
Book Description
Supermanifolds
Author: Alice Rogers
Publisher: World Scientific
ISBN: 9812708855
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book aims to fill the gap in the available literature on supermanifolds, describing the different approaches to supermanifolds together with various applications to physics, including some which rely on the more mathematical aspects of supermanifold theory. The first part of the book contains a full introduction to the theory of supermanifolds, comparing and contrasting the different approaches that exist. Topics covered include tensors on supermanifolds, super fibre bundles, super Lie groups and integration theory. Later chapters emphasise applications, including the superspace approach to supersymmetric theories, super Riemann surfaces and the spinning string, path integration on supermanifolds and BRST quantization.
Publisher: World Scientific
ISBN: 9812708855
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book aims to fill the gap in the available literature on supermanifolds, describing the different approaches to supermanifolds together with various applications to physics, including some which rely on the more mathematical aspects of supermanifold theory. The first part of the book contains a full introduction to the theory of supermanifolds, comparing and contrasting the different approaches that exist. Topics covered include tensors on supermanifolds, super fibre bundles, super Lie groups and integration theory. Later chapters emphasise applications, including the superspace approach to supersymmetric theories, super Riemann surfaces and the spinning string, path integration on supermanifolds and BRST quantization.
Lectures on Field Theory and Topology
Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1120
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1120
Book Description
Topological Geometrodynamics
Author: Matti Pitkanen
Publisher: Bentham Science Publishers
ISBN: 1681081792
Category : Science
Languages : en
Pages : 1235
Book Description
Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology.
Publisher: Bentham Science Publishers
ISBN: 1681081792
Category : Science
Languages : en
Pages : 1235
Book Description
Topological geometrodynamics (TGD) is a modification of the theory of general relativity inspired by the problems related to the definition of inertial and gravitational energies in the earlier hypotheses. TGD is also a generalization of super string models. TGD brings forth an elegant theoretical projection of reality and builds upon the work by renowned scientists (Wheeler, Feynman, Penrose, Einstein, Josephson to name a few). In TGD, Physical space-time planes are visualized as four-dimensional surfaces in a certain 8-dimensional space (H). The choice of H is fixed by symmetries of standard model and leads to a geometric mapping of known classical fields and elementary particle numbers. TGD differs from Einstein’s geometrodynamics in the way space-time planes or ‘sheets’ are lumped together. Extending the theory based on fusing number concepts implies a further generalisation of the space-time concept allowing the identification of space-time correlates of cognition and intentionality. Additionally, zero energy ontology forces an extension of quantum measurement theory to a theory of consciousness and a hierarchy of phases is identified. Dark matter is thus predicted with far reaching implications for the understanding of consciousness and living systems. Therefore, it sets a solid foundation for modeling our universe in geometric terms. Topological Geometrodynamics: An Overview explains basic and advanced concepts about TGD. The book covers introductory information and classical TGD concepts before delving into twistor-space theory, particle physics, infinite-dimensional spinor geometry, generalized number theory, Planck constants, and the applications of TGD theory in research. The book is a valuable guide to TDG theory for researchers and advanced graduates in theoretical physics and cosmology.