Super-real Fields

Super-real Fields PDF Author: Harold G. Dales
Publisher: Oxford University Press
ISBN: 9780198539919
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
Super-fields are a class of totally ordered fields that are larger than the real line. They arise from quotients of the algebra of continuous functions on a compact space by a prime ideal, and generalize the well-known class of ultrapowers, and indeed the continuous ultrapowers. These fields are an important topic in their own right and have many surprising applications in analysis and logic. The authors introduce these exciting new fields to mathematicians, analysts, and logicians, including a natural generalization of the real line R, and resolve a number of open problems. After an exposition of the general theory of ordered fields and a careful proof of some classic theorems, including Kapansky's embedding, they establish important new results in Banach algebra theory, non-standard analysis, and model theory.

Super-real Fields

Super-real Fields PDF Author: Harold G. Dales
Publisher: Oxford University Press
ISBN: 9780198539919
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
Super-fields are a class of totally ordered fields that are larger than the real line. They arise from quotients of the algebra of continuous functions on a compact space by a prime ideal, and generalize the well-known class of ultrapowers, and indeed the continuous ultrapowers. These fields are an important topic in their own right and have many surprising applications in analysis and logic. The authors introduce these exciting new fields to mathematicians, analysts, and logicians, including a natural generalization of the real line R, and resolve a number of open problems. After an exposition of the general theory of ordered fields and a careful proof of some classic theorems, including Kapansky's embedding, they establish important new results in Banach algebra theory, non-standard analysis, and model theory.

Foundations of Mathematics

Foundations of Mathematics PDF Author: Andrés Eduardo Caicedo
Publisher: American Mathematical Soc.
ISBN: 1470422565
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set theory and Banach spaces, recursion theory, and philosophy, each reflecting a period of Woodin's career. Other topics covered are forcing axioms, inner model theory, the partition calculus, and the theory of ultrafilters. This volume should make a suitable introduction to Woodin's work and the concerns which motivate it. The papers should be of interest to graduate students and researchers in both mathematics and philosophy of mathematics, particularly in set theory, foundations and related areas.

Complex Analysis

Complex Analysis PDF Author: Ian Stewart
Publisher: Cambridge University Press
ISBN: 110843679X
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
A new edition of a classic textbook on complex analysis with an emphasis on translating visual intuition to rigorous proof.

Analysis and Topology in Nonlinear Differential Equations

Analysis and Topology in Nonlinear Differential Equations PDF Author: Djairo G de Figueiredo
Publisher: Springer
ISBN: 3319042149
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.

Positivity

Positivity PDF Author: Karim Boulabiar
Publisher: Springer Science & Business Media
ISBN: 3764384786
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This book presents nine survey articles addressing topics surrounding positivity, with an emphasis on functional analysis. The book assembles a wide spectrum of research into positivity, providing up-to-date information on topics of current interest. The discussion provides insight into classical areas like spaces of continuous functions, f-algebras, and integral operators. The coverage extends is broad, including vector measures, operator spaces, ordered tensor products, and non-commutative Banach function spaces.

Quantum Fields and Strings: A Course for Mathematicians

Quantum Fields and Strings: A Course for Mathematicians PDF Author: Pierre Deligne
Publisher: American Mathematical Society
ISBN: 0821820125
Category : Mathematics
Languages : en
Pages : 747

Get Book Here

Book Description
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.

Operator Algebras and Their Modules

Operator Algebras and Their Modules PDF Author: David P. Blecher
Publisher: Clarendon Press
ISBN: 0198526598
Category : Language Arts & Disciplines
Languages : en
Pages : 398

Get Book Here

Book Description
This invaluable reference is the first to present the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area. A major trend in modern mathematics, inspired largely by physics, is toward noncommutative' or quantized' phenomena. In functional analysis, this has appeared notably under the name of operator spaces', which is a variant of Banach spaces which is particularly appropriate for solving problems concerning spaces or algebras of operators on Hilbert space arising in 'noncommutative mathematics'. The category of operator spaces includes operator algebras, selfadjoint (that is, C*-algebras) or otherwise. Also, most of the important modules over operator algebras are operator spaces. A common treatment of the subjects of C*-algebras, Non-selfadjoint operator algebras, and modules over such algebras (such as Hilbert C*-modules), together under the umbrella of operator space theory, is the main topic of the book. A general theory of operator algebras, and their modules, naturally develops out of the operator space methodology. Indeed, operator space theory is a sensitive enough medium to reflect accurately many important non-commutative phenomena. Using recent advances in the field, the book shows how the underlying operator space structure captures, very precisely, the profound relations between the algebraic and the functional analytic structures involved. The rich interplay between spectral theory, operator theory, C*-algebra and von Neumann algebra techniques, and the influx of important ideas from related disciplines, such as pure algebra, Banach space theory, Banach algebras, and abstract function theory is highlighted. Each chapter ends with a lengthy section of notes containing a wealth of additional information.

Spectral Spaces

Spectral Spaces PDF Author: Max Dickmann
Publisher: Cambridge University Press
ISBN: 1107146720
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
Offers a comprehensive presentation of spectral spaces focussing on their topology and close connections with algebra, ordered structures, and logic.

Integrability, Self-duality, and Twistor Theory

Integrability, Self-duality, and Twistor Theory PDF Author: Lionel J. Mason
Publisher: Oxford University Press
ISBN: 9780198534983
Category : Language Arts & Disciplines
Languages : en
Pages : 384

Get Book Here

Book Description
Many of the familiar integrable systems of equations are symmetry reductions of self-duality equations on a metric or on a Yang-Mills connection. For example, the Korteweg-de Vries and non-linear Schrodinger equations are reductions of the self-dual Yang-Mills equation. This book explores in detail the connections between self-duality and integrability, and also the application of twistor techniques to integrable systems. It supports two central theories: that the symmetries of self-duality equations provide a natural classification scheme for integrable systems; and that twistor theory provides a uniform geometric framework for the study of Backlund transformations, the inverse scattering method, and other such general constructions of integrability theory. The book will be useful to researchers and graduate students in mathematical physics.

Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras

Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras PDF Author: Meinolf Geck
Publisher: Oxford University Press
ISBN: 9780198502500
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.