Author: Bruce Arie Reznick
Publisher: American Mathematical Soc.
ISBN: 0821825232
Category : Mathematics
Languages : en
Pages : 169
Book Description
This work initiates a systematic analysis of the representation of real forms of even degree as sums of powers of linear forms and the resulting implications in real algebraic geometry, number theory, combinatorics, functional analysis, and numerical analysis. The proofs utilize elementary techniques from linear algebra, convexity, number theory, and real algebraic geometry and many explicit examples and relevant historical remarks are presented.
Sum of Even Powers of Real Linear Forms
Author: Bruce Arie Reznick
Publisher: American Mathematical Soc.
ISBN: 0821825232
Category : Mathematics
Languages : en
Pages : 169
Book Description
This work initiates a systematic analysis of the representation of real forms of even degree as sums of powers of linear forms and the resulting implications in real algebraic geometry, number theory, combinatorics, functional analysis, and numerical analysis. The proofs utilize elementary techniques from linear algebra, convexity, number theory, and real algebraic geometry and many explicit examples and relevant historical remarks are presented.
Publisher: American Mathematical Soc.
ISBN: 0821825232
Category : Mathematics
Languages : en
Pages : 169
Book Description
This work initiates a systematic analysis of the representation of real forms of even degree as sums of powers of linear forms and the resulting implications in real algebraic geometry, number theory, combinatorics, functional analysis, and numerical analysis. The proofs utilize elementary techniques from linear algebra, convexity, number theory, and real algebraic geometry and many explicit examples and relevant historical remarks are presented.
Flat Extensions of Positive Moment Matrices: Recursively Generated Relations
Author: Raúl E. Curto
Publisher: American Mathematical Soc.
ISBN: 0821808699
Category : Mathematics
Languages : en
Pages : 73
Book Description
In this book, the authors develop new computational tests for existence and uniqueness of representing measures $\mu$ in the Truncated Complex Moment Problem: $\gamma {ij}=\int \bar zizj\, d\mu$ $(0\le i+j\le 2n)$. Conditions for the existence of finitely atomic representing measures are expressed in terms of positivity and extension properties of the moment matrix $M(n)(\gamma )$ associated with $\gamma \equiv \gamma {(2n)}$: $\gamma {00}, \dots ,\gamma {0,2n},\dots ,\gamma {2n,0}$, $\gamma {00}>0$. This study includes new conditions for flat (i.e., rank-preserving) extensions $M(n+1)$ of $M(n)\ge 0$; each such extension corresponds to a distinct rank $M(n)$-atomic representing measure, and each such measure is minimal among representing measures in terms of the cardinality of its support. For a natural class of moment matrices satisfying the tests of recursive generation, recursive consistency, and normal consistency, the existence problem for minimal representing measures is reduced to the solubility of small systems of multivariable algebraic equations. In a variety of applications, including cases of the quartic moment problem ($n=2$), the text includes explicit contructions of minimal representing measures via the theory of flat extensions. Additional computational texts are used to prove non-existence of representing measures or the non-existence of minimal representing measures. These tests are used to illustrate, in very concrete terms, new phenomena, associated with higher-dimensional moment problems that do not appear in the classical one-dimensional moment problem.
Publisher: American Mathematical Soc.
ISBN: 0821808699
Category : Mathematics
Languages : en
Pages : 73
Book Description
In this book, the authors develop new computational tests for existence and uniqueness of representing measures $\mu$ in the Truncated Complex Moment Problem: $\gamma {ij}=\int \bar zizj\, d\mu$ $(0\le i+j\le 2n)$. Conditions for the existence of finitely atomic representing measures are expressed in terms of positivity and extension properties of the moment matrix $M(n)(\gamma )$ associated with $\gamma \equiv \gamma {(2n)}$: $\gamma {00}, \dots ,\gamma {0,2n},\dots ,\gamma {2n,0}$, $\gamma {00}>0$. This study includes new conditions for flat (i.e., rank-preserving) extensions $M(n+1)$ of $M(n)\ge 0$; each such extension corresponds to a distinct rank $M(n)$-atomic representing measure, and each such measure is minimal among representing measures in terms of the cardinality of its support. For a natural class of moment matrices satisfying the tests of recursive generation, recursive consistency, and normal consistency, the existence problem for minimal representing measures is reduced to the solubility of small systems of multivariable algebraic equations. In a variety of applications, including cases of the quartic moment problem ($n=2$), the text includes explicit contructions of minimal representing measures via the theory of flat extensions. Additional computational texts are used to prove non-existence of representing measures or the non-existence of minimal representing measures. These tests are used to illustrate, in very concrete terms, new phenomena, associated with higher-dimensional moment problems that do not appear in the classical one-dimensional moment problem.
Algebraic and Geometric Ideas in the Theory of Discrete Optimization
Author: Jesus A. De Loera
Publisher: SIAM
ISBN: 1611972434
Category : Mathematics
Languages : en
Pages : 320
Book Description
In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.
Publisher: SIAM
ISBN: 1611972434
Category : Mathematics
Languages : en
Pages : 320
Book Description
In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.
Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen
Author: Koninklijke Akademie van Wetenschappen (Netherlands). Afdeeling Natuurkunde
Publisher:
ISBN:
Category : Natural history
Languages : en
Pages : 560
Book Description
Publisher:
ISBN:
Category : Natural history
Languages : en
Pages : 560
Book Description
Proceedings of the Section of Sciences
Author: Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Natuurkunde
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 536
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 536
Book Description
Abstracts of Papers Presented to the American Mathematical Society
Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 658
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 658
Book Description
Positive Polynomials and Sums of Squares
Author: Murray Marshall
Publisher: American Mathematical Soc.
ISBN: 0821844024
Category : Mathematics
Languages : en
Pages : 201
Book Description
The study of positive polynomials brings together algebra, geometry and analysis. The subject is of fundamental importance in real algebraic geometry when studying the properties of objects defined by polynomial inequalities. Hilbert's 17th problem and its solution in the first half of the 20th century were landmarks in the early days of the subject. More recently, new connections to the moment problem and to polynomial optimization have been discovered. The moment problem relates linear maps on the multidimensional polynomial ring to positive Borel measures. This book provides an elementary introduction to positive polynomials and sums of squares, the relationship to the moment problem, and the application to polynomial optimization. The focus is on the exciting new developments that have taken place in the last 15 years, arising out of Schmudgen's solution to the moment problem in the compact case in 1991. The book is accessible to a well-motivated student at the beginning graduate level. The objects being dealt with are concrete and down-to-earth, namely polynomials in $n$ variables with real coefficients, and many examples are included. Proofs are presented as clearly and as simply as possible. Various new, simpler proofs appear in the book for the first time. Abstraction is employed only when it serves a useful purpose, but, at the same time, enough abstraction is included to allow the reader easy access to the literature. The book should be essential reading for any beginning student in the area.
Publisher: American Mathematical Soc.
ISBN: 0821844024
Category : Mathematics
Languages : en
Pages : 201
Book Description
The study of positive polynomials brings together algebra, geometry and analysis. The subject is of fundamental importance in real algebraic geometry when studying the properties of objects defined by polynomial inequalities. Hilbert's 17th problem and its solution in the first half of the 20th century were landmarks in the early days of the subject. More recently, new connections to the moment problem and to polynomial optimization have been discovered. The moment problem relates linear maps on the multidimensional polynomial ring to positive Borel measures. This book provides an elementary introduction to positive polynomials and sums of squares, the relationship to the moment problem, and the application to polynomial optimization. The focus is on the exciting new developments that have taken place in the last 15 years, arising out of Schmudgen's solution to the moment problem in the compact case in 1991. The book is accessible to a well-motivated student at the beginning graduate level. The objects being dealt with are concrete and down-to-earth, namely polynomials in $n$ variables with real coefficients, and many examples are included. Proofs are presented as clearly and as simply as possible. Various new, simpler proofs appear in the book for the first time. Abstraction is employed only when it serves a useful purpose, but, at the same time, enough abstraction is included to allow the reader easy access to the literature. The book should be essential reading for any beginning student in the area.
Certificates of Positivity for Real Polynomials
Author: Victoria Powers
Publisher: Springer Nature
ISBN: 3030855473
Category : Mathematics
Languages : en
Pages : 161
Book Description
This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial. Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19th century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed. This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers who are not specialists can learn about this fascinating subject. Furthermore, researchers who work on certificates of positivity or use them in applications will find this a useful reference for their work.
Publisher: Springer Nature
ISBN: 3030855473
Category : Mathematics
Languages : en
Pages : 161
Book Description
This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial. Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19th century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed. This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers who are not specialists can learn about this fascinating subject. Furthermore, researchers who work on certificates of positivity or use them in applications will find this a useful reference for their work.
Hokkaido Mathematical Journal
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 954
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 954
Book Description
Decomposability of Tensors
Author: Luca Chiantini
Publisher: MDPI
ISBN: 3038975907
Category : Mathematics
Languages : en
Pages : 161
Book Description
This book is a printed edition of the Special Issue "Decomposability of Tensors" that was published in Mathematics
Publisher: MDPI
ISBN: 3038975907
Category : Mathematics
Languages : en
Pages : 161
Book Description
This book is a printed edition of the Special Issue "Decomposability of Tensors" that was published in Mathematics