Author: Haitham Hassanieh
Publisher: Morgan & Claypool
ISBN: 1947487051
Category : Computers
Languages : en
Pages : 279
Book Description
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.
The Sparse Fourier Transform
Author: Haitham Hassanieh
Publisher: Morgan & Claypool
ISBN: 1947487051
Category : Computers
Languages : en
Pages : 279
Book Description
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.
Publisher: Morgan & Claypool
ISBN: 1947487051
Category : Computers
Languages : en
Pages : 279
Book Description
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.
Numerical Fourier Analysis
Author: Gerlind Plonka
Publisher: Springer
ISBN: 3030043061
Category : Mathematics
Languages : en
Pages : 624
Book Description
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.
Publisher: Springer
ISBN: 3030043061
Category : Mathematics
Languages : en
Pages : 624
Book Description
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.
Fast Fourier Transform - Algorithms and Applications
Author: K.R. Rao
Publisher: Springer Science & Business Media
ISBN: 1402066295
Category : Mathematics
Languages : en
Pages : 437
Book Description
This book presents an introduction to the principles of the fast Fourier transform. This book covers FFTs, frequency domain filtering, and applications to video and audio signal processing. As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics. This book provides thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.
Publisher: Springer Science & Business Media
ISBN: 1402066295
Category : Mathematics
Languages : en
Pages : 437
Book Description
This book presents an introduction to the principles of the fast Fourier transform. This book covers FFTs, frequency domain filtering, and applications to video and audio signal processing. As fields like communications, speech and image processing, and related areas are rapidly developing, the FFT as one of essential parts in digital signal processing has been widely used. Thus there is a pressing need from instructors and students for a book dealing with the latest FFT topics. This book provides thorough and detailed explanation of important or up-to-date FFTs. It also has adopted modern approaches like MATLAB examples and projects for better understanding of diverse FFTs.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
A Wavelet Tour of Signal Processing
Author: Stephane Mallat
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663
Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663
Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Computational Frameworks for the Fast Fourier Transform
Author: Charles Van Loan
Publisher: SIAM
ISBN: 0898712858
Category : Mathematics
Languages : en
Pages : 285
Book Description
The author captures the interplay between mathematics and the design of effective numerical algorithms.
Publisher: SIAM
ISBN: 0898712858
Category : Mathematics
Languages : en
Pages : 285
Book Description
The author captures the interplay between mathematics and the design of effective numerical algorithms.
A Mathematical Introduction to Compressive Sensing
Author: Simon Foucart
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 634
Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 634
Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Clever Algorithms
Author: Jason Brownlee
Publisher: Jason Brownlee
ISBN: 1446785068
Category : Computers
Languages : en
Pages : 437
Book Description
This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.
Publisher: Jason Brownlee
ISBN: 1446785068
Category : Computers
Languages : en
Pages : 437
Book Description
This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.
Partitioned convolution algorithms for real-time auralization
Author: Frank Wefers
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832539433
Category : Computers
Languages : en
Pages : 278
Book Description
This work discusses methods for efficient audio processing with finite impulse response (FIR) filters. Such filters are widely used for high-quality acoustic signal processing, e.g. for headphone or loudspeaker equalization, in binaural synthesis, in spatial sound reproduction techniques and for the auralization of reverberant environments. This work focuses on real-time applications, where the audio processing is subject to minimal delays (latencies). Different fast convolution concepts (transform-based, interpolation-based and number-theoretic), which are used to implement FIR filters efficiently, are examined regarding their applicability in real-time. These fast, elementary techniques can be further improved by the concept of partitioned convolution. This work introduces a classification and a general framework for partitioned convolution algorithms and analyzes the algorithmic classes which are relevant for real-time filtering: Elementary concepts which do not partition the filter impulse response (e.g. regular Overlap-Add and Overlap-Save convolution) and advanced techniques, which partition filters uniformly and non-uniformly. The algorithms are thereby regarded in their analytic complexity, their performance on target hardware, the optimal choice of parameters, assemblies of multiple filters, multi-channel processing and the exchange of filter impulse responses without audible artifacts. Suitable convolution techniques are identified for different types of audio applications, ranging from resource-aware auralizations on mobile devices to extensive room acoustics audio rendering using dedicated multi-processor systems.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832539433
Category : Computers
Languages : en
Pages : 278
Book Description
This work discusses methods for efficient audio processing with finite impulse response (FIR) filters. Such filters are widely used for high-quality acoustic signal processing, e.g. for headphone or loudspeaker equalization, in binaural synthesis, in spatial sound reproduction techniques and for the auralization of reverberant environments. This work focuses on real-time applications, where the audio processing is subject to minimal delays (latencies). Different fast convolution concepts (transform-based, interpolation-based and number-theoretic), which are used to implement FIR filters efficiently, are examined regarding their applicability in real-time. These fast, elementary techniques can be further improved by the concept of partitioned convolution. This work introduces a classification and a general framework for partitioned convolution algorithms and analyzes the algorithmic classes which are relevant for real-time filtering: Elementary concepts which do not partition the filter impulse response (e.g. regular Overlap-Add and Overlap-Save convolution) and advanced techniques, which partition filters uniformly and non-uniformly. The algorithms are thereby regarded in their analytic complexity, their performance on target hardware, the optimal choice of parameters, assemblies of multiple filters, multi-channel processing and the exchange of filter impulse responses without audible artifacts. Suitable convolution techniques are identified for different types of audio applications, ranging from resource-aware auralizations on mobile devices to extensive room acoustics audio rendering using dedicated multi-processor systems.
Handbook of Mathematical Methods in Imaging
Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626
Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626
Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.