Author: Tommaso Pardini
Publisher:
ISBN:
Category :
Languages : en
Pages : 260
Book Description
Study of Heisenberg Models by Means of Series Expansion Calculations
Author: Tommaso Pardini
Publisher:
ISBN:
Category :
Languages : en
Pages : 260
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 260
Book Description
Author: P.D. Day
Publisher: Royal Society of Chemistry
ISBN: 0851863019
Category :
Languages : en
Pages : 220
Book Description
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Publisher: Royal Society of Chemistry
ISBN: 0851863019
Category :
Languages : en
Pages : 220
Book Description
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Series Expansion Methods for Strongly Interacting Lattice Models
Author: Jaan Oitmaa
Publisher: Cambridge University Press
ISBN: 0521842425
Category : Science
Languages : en
Pages : 338
Book Description
A comprehensive guide to series expansion methods for lattice models in theoretical physics.
Publisher: Cambridge University Press
ISBN: 0521842425
Category : Science
Languages : en
Pages : 338
Book Description
A comprehensive guide to series expansion methods for lattice models in theoretical physics.
The Hubbard Model
Author: Dionys Baeriswyl
Publisher: Springer Science & Business Media
ISBN: 1489910425
Category : Science
Languages : en
Pages : 408
Book Description
In the slightly more than thirty years since its formulation, the Hubbard model has become a central component of modern many-body physics. It provides a paradigm for strongly correlated, interacting electronic systems and offers insights not only into the general underlying mathematical structure of many-body systems but also into the experimental behavior of many novel electronic materials. In condensed matter physics, the Hubbard model represents the simplest theoret ical framework for describing interacting electrons in a crystal lattice. Containing only two explicit parameters - the ratio ("Ujt") between the Coulomb repulsion and the kinetic energy of the electrons, and the filling (p) of the available electronic band - and one implicit parameter - the structure of the underlying lattice - it appears nonetheless capable of capturing behavior ranging from metallic to insulating and from magnetism to superconductivity. Introduced originally as a model of magnetism of transition met als, the Hubbard model has seen a spectacular recent renaissance in connection with possible applications to high-Tc superconductivity, for which particular emphasis has been placed on the phase diagram of the two-dimensional variant of the model. In mathematical physics, the Hubbard model has also had an essential role. The solution by Lieb and Wu of the one-dimensional Hubbard model by Bethe Ansatz provided the stimulus for a broad and continuing effort to study "solvable" many-body models. In higher dimensions, there have been important but isolated exact results (e. g. , N agoaka's Theorem).
Publisher: Springer Science & Business Media
ISBN: 1489910425
Category : Science
Languages : en
Pages : 408
Book Description
In the slightly more than thirty years since its formulation, the Hubbard model has become a central component of modern many-body physics. It provides a paradigm for strongly correlated, interacting electronic systems and offers insights not only into the general underlying mathematical structure of many-body systems but also into the experimental behavior of many novel electronic materials. In condensed matter physics, the Hubbard model represents the simplest theoret ical framework for describing interacting electrons in a crystal lattice. Containing only two explicit parameters - the ratio ("Ujt") between the Coulomb repulsion and the kinetic energy of the electrons, and the filling (p) of the available electronic band - and one implicit parameter - the structure of the underlying lattice - it appears nonetheless capable of capturing behavior ranging from metallic to insulating and from magnetism to superconductivity. Introduced originally as a model of magnetism of transition met als, the Hubbard model has seen a spectacular recent renaissance in connection with possible applications to high-Tc superconductivity, for which particular emphasis has been placed on the phase diagram of the two-dimensional variant of the model. In mathematical physics, the Hubbard model has also had an essential role. The solution by Lieb and Wu of the one-dimensional Hubbard model by Bethe Ansatz provided the stimulus for a broad and continuing effort to study "solvable" many-body models. In higher dimensions, there have been important but isolated exact results (e. g. , N agoaka's Theorem).
Strongly Correlated Electron Systems Ii - Proceedings Of The Adriatico Conference And Miniworkshop
Author: G Baskaran
Publisher: World Scientific
ISBN: 9814569348
Category : Science
Languages : en
Pages : 444
Book Description
This is the second in a series of miniworkshops and Adriatico conferences devoted to the exciting field of strongly correlated electron systems including quantum Hall effect, metal insulator transition, heavy fermions and high Tc superconductivity. In spite of enormous efforts made by physicists worldwide to solve these difficult problems, many important issues are still widely open and this topic remains the most active field in condensed matter physics. The review talks and reports on original research given by the experts in the field represent a state-of-the-art summary of this fast-moving field.
Publisher: World Scientific
ISBN: 9814569348
Category : Science
Languages : en
Pages : 444
Book Description
This is the second in a series of miniworkshops and Adriatico conferences devoted to the exciting field of strongly correlated electron systems including quantum Hall effect, metal insulator transition, heavy fermions and high Tc superconductivity. In spite of enormous efforts made by physicists worldwide to solve these difficult problems, many important issues are still widely open and this topic remains the most active field in condensed matter physics. The review talks and reports on original research given by the experts in the field represent a state-of-the-art summary of this fast-moving field.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 758
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 758
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Novel Superfluids
Author: K. H. Bennemann
Publisher: International Monographs on Ph
ISBN: 0198719264
Category : Science
Languages : en
Pages : 657
Book Description
Volume 2 of Novel Superfluids continues the presentation of recent results on superfluids, including novel metallic systems, superfluid liquids, and atomic/molecular gases of bosons and fermions, particularly when trapped in optical lattices. Since the discovery of superconductivity (Leyden, 1911), superfluid 4He (Moscow and Cambridge, 1937), superfluid 3He (Cornell, 1972), and observation of Bose-Einstein Condensation (BEC) of a gas (Colorado and MIT, 1995), the phenomenon of superfluidity has remained one of the most important topics in physics. Again and again, novel superfluids yield surprising and interesting behaviors. The many classes of metallic superconductors, including the high temperature perovskite-based oxides, MgB2, organic systems, and Fe-based pnictides, continue to offer challenges. The technical applications grow steadily. What the temperature and field limits are remains illusive. Atomic nuclei, neutron stars and the Universe itself all involve various aspects of superfluidity, and the lessons learned have had a broad impact on physics as a whole.
Publisher: International Monographs on Ph
ISBN: 0198719264
Category : Science
Languages : en
Pages : 657
Book Description
Volume 2 of Novel Superfluids continues the presentation of recent results on superfluids, including novel metallic systems, superfluid liquids, and atomic/molecular gases of bosons and fermions, particularly when trapped in optical lattices. Since the discovery of superconductivity (Leyden, 1911), superfluid 4He (Moscow and Cambridge, 1937), superfluid 3He (Cornell, 1972), and observation of Bose-Einstein Condensation (BEC) of a gas (Colorado and MIT, 1995), the phenomenon of superfluidity has remained one of the most important topics in physics. Again and again, novel superfluids yield surprising and interesting behaviors. The many classes of metallic superconductors, including the high temperature perovskite-based oxides, MgB2, organic systems, and Fe-based pnictides, continue to offer challenges. The technical applications grow steadily. What the temperature and field limits are remains illusive. Atomic nuclei, neutron stars and the Universe itself all involve various aspects of superfluidity, and the lessons learned have had a broad impact on physics as a whole.
Computer Simulation Studies in Condensed-Matter Physics XI
Author: David P. Landau
Publisher: Springer Science & Business Media
ISBN: 3642600956
Category : Science
Languages : en
Pages : 232
Book Description
More than a decade ago, because of the phenomenal growth in the power of computer simulations, The University of Georgia formed the first institutional unit devoted to the use of simulations in research and teaching: The Center for Simulational Physics. As the simulations community expanded further, we sensed a need for a meeting place for both experienced simulators and neophytes to discuss new techniques and recent results in an environment which promoted extended discussion. As a consequence, the Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the eleventh in this series, and the interest shown by the scientific community demonstrates quite clearly the useful purpose which the series has served. The latest workshop was held at The University of Georgia, February 23-27, 1998, and these proceedings provide a "status report" on a number of important topics. This volume is published with the goal of timely dissemination of the material to a wider audience. We wish to offer a special thanks to IBM Corporation for their generous support of this year's workshop. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. We hope that each reader will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual developments. Athens, GA, U. S. A. D. P. Landau April 1998 H-B.
Publisher: Springer Science & Business Media
ISBN: 3642600956
Category : Science
Languages : en
Pages : 232
Book Description
More than a decade ago, because of the phenomenal growth in the power of computer simulations, The University of Georgia formed the first institutional unit devoted to the use of simulations in research and teaching: The Center for Simulational Physics. As the simulations community expanded further, we sensed a need for a meeting place for both experienced simulators and neophytes to discuss new techniques and recent results in an environment which promoted extended discussion. As a consequence, the Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the eleventh in this series, and the interest shown by the scientific community demonstrates quite clearly the useful purpose which the series has served. The latest workshop was held at The University of Georgia, February 23-27, 1998, and these proceedings provide a "status report" on a number of important topics. This volume is published with the goal of timely dissemination of the material to a wider audience. We wish to offer a special thanks to IBM Corporation for their generous support of this year's workshop. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. We hope that each reader will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual developments. Athens, GA, U. S. A. D. P. Landau April 1998 H-B.
Low Dimensional Properties Of Solids: Nobel Jubilee Symposium - Proceedings Of The Nobel Jubilee Symposium
Author: T Claeson
Publisher: World Scientific
ISBN: 9814553751
Category :
Languages : en
Pages : 222
Book Description
Rarely do so many leading physicists attend one symposium. No less than nine Nobel laureates and some 40 other top researchers gathered for this symposium and this book contains the material presented in invited talks as well as the posters. The 34 papers are organised into three groups corresponding to various aspects of low dimensional physics of solids.
Publisher: World Scientific
ISBN: 9814553751
Category :
Languages : en
Pages : 222
Book Description
Rarely do so many leading physicists attend one symposium. No less than nine Nobel laureates and some 40 other top researchers gathered for this symposium and this book contains the material presented in invited talks as well as the posters. The 34 papers are organised into three groups corresponding to various aspects of low dimensional physics of solids.
Computer Studies of Phase Transitions and Critical Phenomena
Author: Ole G. University of Southern Denmark
Publisher: Springer Science & Business Media
ISBN: 3642697097
Category : Science
Languages : en
Pages : 211
Book Description
This book is based on research carried out by the author in close collabora tion with a number of colleagues. In particular, I wish to thank Per Bak, A. John Berlinsky, Hans C. Fogedby, Barry Frank, S. 1. Knak Jensen, David Mukamel, David Pink, and Martin Zuckermann for fruitful and extremely stimulating cooperation. It is a pleasure for me to note that active interaction with most of these colleagues is still continuing. The work has been performed at several different institutions, notably the Department of Chemistry, Aarhus University, Denmark, and the Depart ment of Physics, University of British Columb~a, Canada. I wish to thank the Department of Chemistry at Aarhus University for providing me with splen did research facilities over the years. From May 1980 to August 1981, I visited the Department of Physics at the University of British Columbia and I would like to express my sincere gratitude to members ofthe department for provi ding me with excellent working conditions. My special thanks are due to Professor Myer Bloom who introduced me to the field of phase transitions in biological membranes and in whose biomembrane group I found an extre mely stimulating scientific atmosphere happily married with a most agreeable social climate. During the last two years when a major part ofthis work was carried out, I was supported by AlS De Danske Spritfabrikker through their Jubilreumsle gat of 1981. Their support is gratefully acknowledged.
Publisher: Springer Science & Business Media
ISBN: 3642697097
Category : Science
Languages : en
Pages : 211
Book Description
This book is based on research carried out by the author in close collabora tion with a number of colleagues. In particular, I wish to thank Per Bak, A. John Berlinsky, Hans C. Fogedby, Barry Frank, S. 1. Knak Jensen, David Mukamel, David Pink, and Martin Zuckermann for fruitful and extremely stimulating cooperation. It is a pleasure for me to note that active interaction with most of these colleagues is still continuing. The work has been performed at several different institutions, notably the Department of Chemistry, Aarhus University, Denmark, and the Depart ment of Physics, University of British Columb~a, Canada. I wish to thank the Department of Chemistry at Aarhus University for providing me with splen did research facilities over the years. From May 1980 to August 1981, I visited the Department of Physics at the University of British Columbia and I would like to express my sincere gratitude to members ofthe department for provi ding me with excellent working conditions. My special thanks are due to Professor Myer Bloom who introduced me to the field of phase transitions in biological membranes and in whose biomembrane group I found an extre mely stimulating scientific atmosphere happily married with a most agreeable social climate. During the last two years when a major part ofthis work was carried out, I was supported by AlS De Danske Spritfabrikker through their Jubilreumsle gat of 1981. Their support is gratefully acknowledged.