Author: Tsu-Chang Lee
Publisher: Springer Science & Business Media
ISBN: 1461539544
Category : Computers
Languages : en
Pages : 224
Book Description
63 3. 2 Function Level Adaptation 64 3. 3 Parameter Level Adaptation. 67 3. 4 Structure Level Adaptation 70 3. 4. 1 Neuron Generation . 70 3. 4. 2 Neuron Annihilation 72 3. 5 Implementation . . . . . 74 3. 6 An Illustrative Example 77 3. 7 Summary . . . . . . . . 79 4 Competitive Signal Clustering Networks 93 4. 1 Introduction. . 93 4. 2 Basic Structure 94 4. 3 Function Level Adaptation 96 4. 4 Parameter Level Adaptation . 101 4. 5 Structure Level Adaptation 104 4. 5. 1 Neuron Generation Process 107 4. 5. 2 Neuron Annihilation and Coalition Process 114 4. 5. 3 Structural Relation Adjustment. 116 4. 6 Implementation . . 119 4. 7 Simulation Results 122 4. 8 Summary . . . . . 134 5 Application Example: An Adaptive Neural Network Source Coder 135 5. 1 Introduction. . . . . . . . . . 135 5. 2 Vector Quantization Problem 136 5. 3 VQ Using Neural Network Paradigms 139 Vlll 5. 3. 1 Basic Properties . 140 5. 3. 2 Fast Codebook Search Procedure 141 5. 3. 3 Path Coding Method. . . . . . . 143 5. 3. 4 Performance Comparison . . . . 144 5. 3. 5 Adaptive SPAN Coder/Decoder 147 5. 4 Summary . . . . . . . . . . . . . . . . . 152 6 Conclusions 155 6. 1 Contributions 155 6. 2 Recommendations 157 A Mathematical Background 159 A. 1 Kolmogorov's Theorem . 160 A. 2 Networks with One Hidden Layer are Sufficient 161 B Fluctuated Distortion Measure 163 B. 1 Measure Construction . 163 B. 2 The Relation Between Fluctuation and Error 166 C SPAN Convergence Theory 171 C. 1 Asymptotic Value of Wi 172 C. 2 Energy Function . .
Structure Level Adaptation for Artificial Neural Networks
Author: Tsu-Chang Lee
Publisher: Springer Science & Business Media
ISBN: 1461539544
Category : Computers
Languages : en
Pages : 224
Book Description
63 3. 2 Function Level Adaptation 64 3. 3 Parameter Level Adaptation. 67 3. 4 Structure Level Adaptation 70 3. 4. 1 Neuron Generation . 70 3. 4. 2 Neuron Annihilation 72 3. 5 Implementation . . . . . 74 3. 6 An Illustrative Example 77 3. 7 Summary . . . . . . . . 79 4 Competitive Signal Clustering Networks 93 4. 1 Introduction. . 93 4. 2 Basic Structure 94 4. 3 Function Level Adaptation 96 4. 4 Parameter Level Adaptation . 101 4. 5 Structure Level Adaptation 104 4. 5. 1 Neuron Generation Process 107 4. 5. 2 Neuron Annihilation and Coalition Process 114 4. 5. 3 Structural Relation Adjustment. 116 4. 6 Implementation . . 119 4. 7 Simulation Results 122 4. 8 Summary . . . . . 134 5 Application Example: An Adaptive Neural Network Source Coder 135 5. 1 Introduction. . . . . . . . . . 135 5. 2 Vector Quantization Problem 136 5. 3 VQ Using Neural Network Paradigms 139 Vlll 5. 3. 1 Basic Properties . 140 5. 3. 2 Fast Codebook Search Procedure 141 5. 3. 3 Path Coding Method. . . . . . . 143 5. 3. 4 Performance Comparison . . . . 144 5. 3. 5 Adaptive SPAN Coder/Decoder 147 5. 4 Summary . . . . . . . . . . . . . . . . . 152 6 Conclusions 155 6. 1 Contributions 155 6. 2 Recommendations 157 A Mathematical Background 159 A. 1 Kolmogorov's Theorem . 160 A. 2 Networks with One Hidden Layer are Sufficient 161 B Fluctuated Distortion Measure 163 B. 1 Measure Construction . 163 B. 2 The Relation Between Fluctuation and Error 166 C SPAN Convergence Theory 171 C. 1 Asymptotic Value of Wi 172 C. 2 Energy Function . .
Publisher: Springer Science & Business Media
ISBN: 1461539544
Category : Computers
Languages : en
Pages : 224
Book Description
63 3. 2 Function Level Adaptation 64 3. 3 Parameter Level Adaptation. 67 3. 4 Structure Level Adaptation 70 3. 4. 1 Neuron Generation . 70 3. 4. 2 Neuron Annihilation 72 3. 5 Implementation . . . . . 74 3. 6 An Illustrative Example 77 3. 7 Summary . . . . . . . . 79 4 Competitive Signal Clustering Networks 93 4. 1 Introduction. . 93 4. 2 Basic Structure 94 4. 3 Function Level Adaptation 96 4. 4 Parameter Level Adaptation . 101 4. 5 Structure Level Adaptation 104 4. 5. 1 Neuron Generation Process 107 4. 5. 2 Neuron Annihilation and Coalition Process 114 4. 5. 3 Structural Relation Adjustment. 116 4. 6 Implementation . . 119 4. 7 Simulation Results 122 4. 8 Summary . . . . . 134 5 Application Example: An Adaptive Neural Network Source Coder 135 5. 1 Introduction. . . . . . . . . . 135 5. 2 Vector Quantization Problem 136 5. 3 VQ Using Neural Network Paradigms 139 Vlll 5. 3. 1 Basic Properties . 140 5. 3. 2 Fast Codebook Search Procedure 141 5. 3. 3 Path Coding Method. . . . . . . 143 5. 3. 4 Performance Comparison . . . . 144 5. 3. 5 Adaptive SPAN Coder/Decoder 147 5. 4 Summary . . . . . . . . . . . . . . . . . 152 6 Conclusions 155 6. 1 Contributions 155 6. 2 Recommendations 157 A Mathematical Background 159 A. 1 Kolmogorov's Theorem . 160 A. 2 Networks with One Hidden Layer are Sufficient 161 B Fluctuated Distortion Measure 163 B. 1 Measure Construction . 163 B. 2 The Relation Between Fluctuation and Error 166 C SPAN Convergence Theory 171 C. 1 Asymptotic Value of Wi 172 C. 2 Energy Function . .
Neural Network Systems Techniques and Applications
Author:
Publisher: Academic Press
ISBN: 0080553907
Category : Computers
Languages : en
Pages : 459
Book Description
The book emphasizes neural network structures for achieving practical and effective systems, and provides many examples. Practitioners, researchers, and students in industrial, manufacturing, electrical, mechanical,and production engineering will find this volume a unique and comprehensive reference source for diverse application methodologies. Control and Dynamic Systems covers the important topics of highly effective Orthogonal Activation Function Based Neural Network System Architecture, multi-layer recurrent neural networks for synthesizing and implementing real-time linear control,adaptive control of unknown nonlinear dynamical systems, Optimal Tracking Neural Controller techniques, a consideration of unified approximation theory and applications, techniques for the determination of multi-variable nonlinear model structures for dynamic systems with a detailed treatment of relevant system model input determination, High Order Neural Networks and Recurrent High Order Neural Networks, High Order Moment Neural Array Systems, Online Learning Neural Network controllers, and Radial Bias Function techniques. Coverage includes: - Orthogonal Activation Function Based Neural Network System Architecture (OAFNN) - Multilayer recurrent neural networks for synthesizing and implementing real-time linear control - Adaptive control of unknown nonlinear dynamical systems - Optimal Tracking Neural Controller techniques - Consideration of unified approximation theory and applications - Techniques for determining multivariable nonlinear model structures for dynamic systems, with a detailed treatment of relevant system model input determination
Publisher: Academic Press
ISBN: 0080553907
Category : Computers
Languages : en
Pages : 459
Book Description
The book emphasizes neural network structures for achieving practical and effective systems, and provides many examples. Practitioners, researchers, and students in industrial, manufacturing, electrical, mechanical,and production engineering will find this volume a unique and comprehensive reference source for diverse application methodologies. Control and Dynamic Systems covers the important topics of highly effective Orthogonal Activation Function Based Neural Network System Architecture, multi-layer recurrent neural networks for synthesizing and implementing real-time linear control,adaptive control of unknown nonlinear dynamical systems, Optimal Tracking Neural Controller techniques, a consideration of unified approximation theory and applications, techniques for the determination of multi-variable nonlinear model structures for dynamic systems with a detailed treatment of relevant system model input determination, High Order Neural Networks and Recurrent High Order Neural Networks, High Order Moment Neural Array Systems, Online Learning Neural Network controllers, and Radial Bias Function techniques. Coverage includes: - Orthogonal Activation Function Based Neural Network System Architecture (OAFNN) - Multilayer recurrent neural networks for synthesizing and implementing real-time linear control - Adaptive control of unknown nonlinear dynamical systems - Optimal Tracking Neural Controller techniques - Consideration of unified approximation theory and applications - Techniques for determining multivariable nonlinear model structures for dynamic systems, with a detailed treatment of relevant system model input determination
Advanced Techniques in Knowledge Discovery and Data Mining
Author: Nikhil Pal
Publisher: Springer Science & Business Media
ISBN: 1846281830
Category : Computers
Languages : en
Pages : 264
Book Description
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.
Publisher: Springer Science & Business Media
ISBN: 1846281830
Category : Computers
Languages : en
Pages : 264
Book Description
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.
Methodologies For The Conception, Design, And Application Of Intelligent Systems - Proceedings Of The 4th International Conference On Soft Computing (In 2 Volumes)
Author: Matsumoto Gen
Publisher: World Scientific
ISBN: 9814740780
Category :
Languages : en
Pages : 1064
Book Description
IIZUKA '96, the 4th International Conference on Soft Computing, emphasized the integration of the components of soft computing to promote the research work on post-digital computers and to realize the intelligent systems. At the conference, new developments and results in soft computing were introduced and discussed by researchers from academic, governmental, and industrial institutions.This volume presents the opening lectures by Prof. Lotfi A. Zadeh and Prof. Walter J. Freeman, the plenary lectures by seven eminent researchers, and about 200 carefully selected papers drawn from more than 20 countries. It documents current research and in-depth studies on the conception, design, and application of intelligent systems.
Publisher: World Scientific
ISBN: 9814740780
Category :
Languages : en
Pages : 1064
Book Description
IIZUKA '96, the 4th International Conference on Soft Computing, emphasized the integration of the components of soft computing to promote the research work on post-digital computers and to realize the intelligent systems. At the conference, new developments and results in soft computing were introduced and discussed by researchers from academic, governmental, and industrial institutions.This volume presents the opening lectures by Prof. Lotfi A. Zadeh and Prof. Walter J. Freeman, the plenary lectures by seven eminent researchers, and about 200 carefully selected papers drawn from more than 20 countries. It documents current research and in-depth studies on the conception, design, and application of intelligent systems.
Multistrategy Learning
Author: Ryszard S. Michalski
Publisher: Springer Science & Business Media
ISBN: 1461532027
Category : Computers
Languages : en
Pages : 156
Book Description
Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area.
Publisher: Springer Science & Business Media
ISBN: 1461532027
Category : Computers
Languages : en
Pages : 156
Book Description
Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area.
Eighth International Conference on Adaptive Structures
Author: Yoshisada Murotsu
Publisher: CRC Press
ISBN: 9781566766562
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Publisher: CRC Press
ISBN: 9781566766562
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Artificial Neural Networks for Engineering Applications
Author: Alma Y Alanis
Publisher: Academic Press
ISBN: 0128182474
Category : Science
Languages : en
Pages : 176
Book Description
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Publisher: Academic Press
ISBN: 0128182474
Category : Science
Languages : en
Pages : 176
Book Description
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Handbook on Artificial Intelligence-Empowered Applied Software Engineering
Author: Maria Virvou
Publisher: Springer Nature
ISBN: 3031076508
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
Evolving technological advancements in big data, smartphone and mobile software applications, the Internet of Things and a vast range of application areas in all sorts of human activities and professions, lead current research toward the efficient incorporation of artificial intelligence enhancements into software and the empowerment of software with artificial intelligence. The book at hand, devoted to Smart Software Applications in Cyber-Physical Systems, constitutes the second volume of a two-volume Handbook on Artificial Intelligence-empowered Applied Software Engineering. Topics include very significant advances in Smart Software Applications in (i) Scientific Document Processing, (ii) Enterprise Modeling, (iii) Education, (iv) Health care and Medicine, and (v) Infrastructure Monitoring. Professors, researchers, scientists, engineers, and students in artificial intelligence, software engineering, and computer science-related disciplines are expected to benefit from it, along with interested readers from other disciplines.
Publisher: Springer Nature
ISBN: 3031076508
Category : Technology & Engineering
Languages : en
Pages : 209
Book Description
Evolving technological advancements in big data, smartphone and mobile software applications, the Internet of Things and a vast range of application areas in all sorts of human activities and professions, lead current research toward the efficient incorporation of artificial intelligence enhancements into software and the empowerment of software with artificial intelligence. The book at hand, devoted to Smart Software Applications in Cyber-Physical Systems, constitutes the second volume of a two-volume Handbook on Artificial Intelligence-empowered Applied Software Engineering. Topics include very significant advances in Smart Software Applications in (i) Scientific Document Processing, (ii) Enterprise Modeling, (iii) Education, (iv) Health care and Medicine, and (v) Infrastructure Monitoring. Professors, researchers, scientists, engineers, and students in artificial intelligence, software engineering, and computer science-related disciplines are expected to benefit from it, along with interested readers from other disciplines.
Engineering Evolutionary Intelligent Systems
Author: Ajith Abraham
Publisher: Springer
ISBN: 3540753966
Category : Computers
Languages : en
Pages : 456
Book Description
This edited volume deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business and commerce. It comprises 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Publisher: Springer
ISBN: 3540753966
Category : Computers
Languages : en
Pages : 456
Book Description
This edited volume deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business and commerce. It comprises 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Rule-Based Programming
Author: Thaddeus J. Kowalski
Publisher: Springer Science & Business Media
ISBN: 1461314356
Category : Computers
Languages : en
Pages : 317
Book Description
Rule-Based Programming is a broad presentation of the rule-based programming method with many example programs showing the strengths of the rule-based approach. The rule-based approach has been used extensively in the development of artificial intelligence systems, such as expert systems and machine learning. This rule-based programming technique has been applied in such diverse fields as medical diagnostic systems, insurance and banking systems, as well as automated design and configuration systems. Rule-based programming is also helpful in bridging the semantic gap between an application and a program, allowing domain specialists to understand programs and participate more closely in their development. Over sixty programs are presented and all programs are available from an ftp site. Many of these programs are presented in several versions allowing the reader to see how realistic programs are elaborated from `back of envelope' models. Metaprogramming is also presented as a technique for bridging the `semantic gap'. Rule-Based Programming will be of interest to programmers, systems analysts and other developers of expert systems as well as to researchers and practitioners in artificial intelligence, computer science professionals and educators.
Publisher: Springer Science & Business Media
ISBN: 1461314356
Category : Computers
Languages : en
Pages : 317
Book Description
Rule-Based Programming is a broad presentation of the rule-based programming method with many example programs showing the strengths of the rule-based approach. The rule-based approach has been used extensively in the development of artificial intelligence systems, such as expert systems and machine learning. This rule-based programming technique has been applied in such diverse fields as medical diagnostic systems, insurance and banking systems, as well as automated design and configuration systems. Rule-based programming is also helpful in bridging the semantic gap between an application and a program, allowing domain specialists to understand programs and participate more closely in their development. Over sixty programs are presented and all programs are available from an ftp site. Many of these programs are presented in several versions allowing the reader to see how realistic programs are elaborated from `back of envelope' models. Metaprogramming is also presented as a technique for bridging the `semantic gap'. Rule-Based Programming will be of interest to programmers, systems analysts and other developers of expert systems as well as to researchers and practitioners in artificial intelligence, computer science professionals and educators.